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At first glance, this question appears to be a binary
dependent variable problem. After all, there are only two
parties, right? Well, even if you ignore third parties, there
is a third option: abstention. In each US presidential elec-
tion, a sizable number of registered voters decide not to
vote. For instance, while Obama received 53% of the vote
cast and McCain received 46%, a full 37.8% of the eligi-
ble voters did not vote. Thus, the distribution of votes
in the 2008 US Presidential election is 33.0% Obama,
28.6% McCain, 0.6% other, and 37.8% none of the above.
As such, conclusions based on those models that assume
a binary outcome have definite issues with generalization
to the voting public at large.

A better alternative is to specifically add in ‘absten-
tion’ and model the three possible outcomes at once.
Such a regression model is called a nominal regression
model or a multinomial regression model.

There is a second type of dependent variable that is
closely related to the nominal case—the ordinal depen-
dent variable. The difference between the nominal and
the ordinal is that the ordinal has more information con-
tained in it. There is no ordering in the nominal case.
There is an implicit ordering in the ordinal case.a Exam-
ples of ordinal variables include ratings and indices.

If we model nominal dependent variables by using a
series of binary regressions, we come up with odd results.
If we force a nominal variable into just two categories, we
lose information in the data. If we treat ordinal depen-
dent variables simply as nominal, information is also lost.
If we treat them as continuous, our conclusions may not
match reality. This chapter examines how to model both
the nominal dependent variable and the ordinal depen-
dent variable more properly.

§ § §

One of the most pervasive research questions in Po-
litical Science is to predict a person’s vote based on
demographic information. In other words, if you know a
person’s age, gender, income, education, and religion,
how well can you predict how that individual will vote in
the upcoming presidential election?

aOrdinal is actually an abbreviation for ordered nominal.
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18.1: Nominal Dependent Variable

A nominal variable is a categorical variable where there does not exist an in-
herent ordering in the categories. Examples may include job type, presiden-
tial vote (and non-vote), and beer brand choice. These variables are categori-
cal — not continuous — and the categories have no inherent ordering. White
Collar is not ‘greater than’ Professional. Voting Democratic is not ‘larger
than’ voting Republican. Budweiser is not ‘more than’ Coors.1 How do we
model such dependent variables?

There are a couple ways of doing this. The first, easiest, and most
understandable is to model the variable as a series of binary dependent vari-
ables. We already understand how this works, the testing of the model is al-
ready conceptually understood, and it works.2 There are just a couple things
to clarify.

18.1.1 Mathematical model As with the simply binary dependent vari-
able case, let us layout the mathematical background to the nominal depen-
dent case. As in the binary dependent variables case, we are actually mod-
eling the underlying probabilities of each of the outcomes. Also, as in the
binary dependent variable case, the probabilities sum to one.

Thus, if we let pj be the probability that category j is selected, then
the following two conditions must hold:

0 < pj < 1 for all j ∈
{
1,2, . . . , J

}
(18.1)

J∑
j=1

pj = 1 (18.2)

Condition (18.1) must hold because we are dealing with probabilities bounded
by 0 and 1, and Condition (18.2) holds because one of the J possible outcomes
must happen. In the binary case, our two probabilities were p and 1−p, which
satisfies the second condition by default.

1Of course, there may be a time when you are predicting Republican vote by examining an
underlying level of conservatism. In such a case, Democratic–Republican would be ordered.
Thus, it really depends on what you are predicting (as always).

2Usually. Nothing in statistics always is best. As you have seen by now, there are always
methods that work better, but with trade-offs. The science here is to be aware of the strengths
with the weaknesses and balance them to get closer to the true process you are trying to
model.
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When we generalize the binary case, we need to select an appropri-
ate probability distribution—one that can model J possible outcomes with J
different probabilities. That distribution is called the multinomial distribu-
tion.3 The probability density function for the multinomial distribution in
the general case is

fX(x) =
n!

x1!x2! · · ·xJ !
px1

1 p
x2
2 · · ·p

xJ
J (18.3)

Here, xi are non-negative integers and
∑
xj = n. The expected value of this

distribution for a specified outcome is

E [X] = npj (18.4)

Here, n is the total number of trials and pj is the probability of outcome j.

Example 18.1. Let us illustrate this with a typical “rolling a die example.”
Assuming that the die is fair, then the probability of rolling a on the die is
1
6 . If we roll a fair die 100 times, what is the expected number of s?

This is a multinomial experiment. There are a fixed number of pos-
sible outcomes (six), the probabilities of each outcome are constant (they do
not change as we roll the die), and the probabilities sum to one. As such, we
know the expected value is

E [X] = 100× 1
6
≈ 16.67

Thus, we expect (on average) to roll 16.67 s in 100 rolls of a fair die.

As we have a formula for our expected value, we have our mechanism
for estimating the several pj : in an experiment (or set of data), count the
number of times outcome j occurred and divide by the total number of trials
(or records). This is actually the Maximum Likelihood Estimate for pj . Thus,
our linear predictor is

logit(pj ) = βj,0 + βj,1x1 + βj,2x2 + · · ·+ βj,kxk

Notice that this linear predictor has k + 1 parameters to estimate for
each of the j categories. Thus, you will need more than j(k+ 1) pieces of data

3Recall that the distribution in the binary case was the binomial distribution.
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to fit it. There are ways to reduce the dimensionality of the problem (reduce
the number of parameters in need of estimation); however, these are beyond
the scope of this book.

We need the logit link (or something just like it) to force our linear
predictions to be in the range pj ∈ (0,1). As any link that maps L : R→ (0,1)
is acceptable. We could use the log-log link, the complementary log-log link,
or the probit link. As before, the choice of the link function is largely a
matter of tradition. If you deviate from tradition, the burden of proof is on
you to justify the selection. Furthermore, the differences are usually slight.
If the differences are large, then there is something wrong with your research
model. Because of this, it would behoove you to fit your research model using
a couple different (appropriate) link functions to help determine the stability
(robustness) of your results.

Note: Thus, there are two things that you need to take away from this dis-
cussion: First, we are able to fit the entire model at once because we have
a distribution that can produce the necessary nominal results. Second, we
model the underlying probabilities (like in the binary case), not the actual
outcomes, as usual.

To see this in action, let us look at an extended example.

Example 18.2. The General Social Survey (GSS) at the University of Chicago
conducts an extensive survey of adult Americans every year. The data is
freely available.4 In this small subset of the data, gssocc, I would like to
predict a person’s occupation category (occ) based on race (white), years of
education (ed), and years of experience (exper).

Before getting started, let us examine the variables involved. The race
variable is binary, with a ‘1’ representing the person identifying as ‘white’
and a ‘0’ otherwise. As a side note, this is a race variable, not an ethnic-
ity variable. Thus, Hispanics may self-identify as either white or non-white.
Also note that this is a self-identification variable; that is, the individual be-
ing surveyed decided his or her reported race. Looking at a frequency count,
a full 91.69% of the respondents stated they were white. This is significantly
higher than the population at large, where approximately 80% of Americans
are white. When we do the final analysis, we need to keep this in mind, as it
is not necessarily representative of the nation as a whole.

4The data can be accessed from http://www.norc.uchicago.edu/GSS+Website/.
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The median number of years of education in the sample is 12 years,
which corresponds to graduating from high school. The mean number of
years is 13.09, which indicates the sample is right skewed (mean is larger
than the median). Furthermore, it is interesting to note that the first quartile
is also 12 years. This indicates that at least 25% of the sample only grad-
uated from high school. Digging a little, we find that 32.3% of the sample
only graduated from high school. Additionally, 23.4% of the sample received
a bachelor’s degree or more, which is close to the population (27% have re-
ceived a bachelor’s degree or higher). Finally, 18.7% of the sample did not
graduate from high school, which is close to the 15% estimate of the pop-
ulation. From this, it appears as though the sample is representative of the
population in terms of educational attainment.

The third independent variable is the years of experience in the job.
There are no general statistics for the population, so we will have to make a
large assumption that the sample represents the population.5 In the sample,
the years of experience varies widely, from 2 to 66 years. The median is 17
years and the mean is 20.5 years. Thus, the sample is also right skewed.
This makes sense as this is a count variable. Count variables tend to be right
skewed as they cannot take on negative values. In fact, there is nothing in
the distribution of the experience variable that looks wrong. With that said,
however, one still needs to mention the caveat.

Looking at the correlations amongst the independent variables can
help us avoid any unpleasantries and surprises due to collinearity and mul-
ticollinearity. The correlation matrix (Table 18.1) does not show any hint of
multicollinearity. In fact, this correlation matrix suggests that these three
variables are effectively independent of each other.6

Finally, let us note that there may be an inherent ordering in some of
the jobs (White Collar greater than Blue Collar), but not for all five of the
categories. As such, this is definitely a candidate for nominal regression.

Nominal regression: Now, let us model the outcome variable with the three
independent variables. Actually, we need to step back and really think about
what we mean by ‘model the outcome’. Do I want to predict the probability

5This was a safe assumption with respect to the education variable, but not with respect
to the white variable. As such, it needs to be mentioned that you are unable to check the
representativeness of the experience variable.

6Pearson’s product-moment correlation test indicates that the correlation between educa-
tion and experience is statistically significant at the α = 0.05 level (t = −5.2152,df = 335,p�
0.0001). However, the coefficient of -0.2740 is a low level of correlation.
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White Education Experience

White 1.0000 0.0243 -0.0794
Education 0.0243 1.0000 -0.2740
Experience -0.0794 -0.2740 1.0000

Table 18.1: Correlation matrix for the three independent variables in the example, from
gssocc data: cor.x(gssocc).

Estimate Std. Error z-value p-value

Intercept 3.1036 1.0110 3.07 0.0021
White 0.7090 0.6213 1.14 0.2538
Years of education -0.3721 0.0640 -5.81 0.0000
Years of experience -0.0259 0.0113 -2.30 0.0215

Table 18.2: Results from the GLM (using the binomial family and the logit link) predict-
ing whether or not a person is a blue collar worker. The AIC for this model is 304.75.

that a person will be Blue Collar given the x-variables? Or: Do I want to pre-
dict the job category given the input variables? These are different questions.
They require slightly different methods.

The first question actually asks a binary question: What is the proba-
bility that a person will be Blue Collar (compared to all of the other job cate-
gories)? This is very much like the questions asked in Chapter 16. Here, the
dependent variable takes on values 1 (Blue Collar) and 0 (not Blue Collar).

To answer this question, we need to create a variable called bluecol
as an indicator variable for Blue Collared-ness. Thus, the model we fit will
be

bluecol ∼ white+ed+exper

We would fit it using a Generalized Linear Model, a binomial family, and a
logit link. The results of the regression are in Table 18.2. From this model,
we can perform all of the goodness of fit measures from Chapter 16.

Looking at the results from running the model, we see that greater lev-
els of education and greater levels of experience are associated with a lower
probability of being a blue collar worker. For Bob, an individual who re-
sponded that he was white, had 20 years of education, and 10 years of ex-
perience in their current job, the probability of being a blue collar worker is
approximately 2% (as compared to not being a blue collar worker).
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Note: This last part is subtle, but extremely important. Here is why:
What is the probability that Bob is a white collar worker? If we do the
same steps above, we get that the probability that Bob is a white collar
worker (as compared to not being a white collar worker) is 13.1%. Simi-
larly, if we continue performing separate logistic regressions, the proba-
bility that Bob is a professional is 96.9%; menial, 2.3%; and craft, 7.9%.

Note that all of these probabilities add up to more than 100%.
There is something wrong here, since the probability that Bob holds one
of these five job types cannot be greater than 100%.

The problem is that we kept changing the base category. In Chapter
16, we never mentioned the need to specify the base category since it always
defaulted to the opposite of what we were modeling. In other words, we were
actually measuring the probability of an event as compared to the probability
of ‘not the event’. This ensured that the probabilities always added up to
100%. Within each of the above five regressions, if we added the probability
of the event that Bob holds job type X with the probability that Bob holds job
type not X, we always get 100%.

The lesson: comparing probabilities of events is not as easy as when we were
only working in the binary realm. It is doable — easily so, with one small
change. We need to select a base category that does not change throughout
our analysis. The choice is up to you, as all choices are equally acceptable.

Since we can select any job type as our base, let us select Blue Collar,
since it is first in our dataset, and since the level in the first record is the
default base for most programs. (We will see shortly how to switch between
the bases.)

To perform this modeling, you will have to load the nnet package,
which comes with your base distribution of R. Once loaded with the library(nnet)
command, to fit the better model, use the R command

multinom(occ ∼ white + ed + exper)

Because of the large amount of output, the regression table is structured
slightly different. The coefficients (in logit units) and the standard errors
are still presented. The statistical significance is not. However, a quick rule
of thumb is that the variable is statistically significant (at the α = 0.05 level)
if the parameter estimate is more than twice the standard error. Table 18.3
presents the output from modeling the data in the form given in the output.
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Coefficients:
Constant Term White Education Level Experience

Craft -1.8328 -0.7642 0.1933 0.0230
Menial -0.7412 -1.2365 0.0994 -0.0074
Prof -12.2595 0.5376 0.8783 0.0309
WhiteCol -6.9800 0.3349 0.4526 0.0299

Std. Errors:
Constant Term White Education Level Experience

Craft 1.1861 0.6324 0.0775 0.0126
Menial 1.5195 0.1996 0.1023 0.0174
Prof 1.6681 0.7996 0.1005 0.0144
WhiteCol 1.7144 0.9340 0.1023 0.0153

Table 18.3: Results of the multinomial regression. Note that the p-values are not pro-
vided. To determine which independent variables are statistically significant for predict-
ing the dependent variable levels, divide the coefficient estimate by the standard error. If
that ratio is greater than 2, then the variable is statistically significant at the α = 0.05
level.

Note that one of the five job types is missing: Blue Collar. This is be-
cause all of the probabilities are measured with respect to Blue Collar. Thus,
these percentages are directly comparable (after transforming from logit units).

R is nice in that if you predict on a multinomial model, it will give
you the category with the highest probability, by default. Thus, according to
this model, Bob will most likely be a Professional (which was our conclusion
above). If we want the probabilities for each of the possible job types for Bob,
we need to add a type="probs" parameter to our function call:

predict(model.mn1, newdata=BOB, type="probs")

Such a call gives us the following probabilities (which sum to one, as they
should):

BlueCol Craft Menial Prof WhiteCol

0.0020 0.0091 0.0020 0.9565 0.0304

Base switching: If you wish to switch your base category, there are two op-
tions. First, you can subtract the parameter estimates of the new base from
all the other bases. Thus, if we want to change the base from Blue Collar to
Professional, we would subtract the Professional parameter estimates from
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the other parameter estimates. So, for example, the White Color estimates
with Professional as the base will be −6.9800−−12.2595 = 5.2795. Unfortu-
nately, the standard errors are not so easily calculated — or at all reasonably
calculable by hand.

Also unfortunately, most statistical programs require you to physi-
cally re-order the data to select a different base; most programs use the
level of the first data point as the base category. R does allow you to switch
among the bases without having to physically alter the data. Unfortunately,
the method is rather arcane. Fortunately, the RFS package has a function,
set.base() that allows you to change the bases much more easily.

Thus, to set craft as the base, we would use the command

occ <- set.base(occ, base="craft", data=gssocc)

I leave it as an exercise to rerun the analysis with craft as the base. Check
that the parameter estimates follow the above observation.

Interpretation: The interpretation of the coefficients (parameter estimates)
is the same as for the binary dependent variable case. Just remember that
the coefficients are in logit units. In R, however, this library does not require
you to back-transform. To remember this, just look at the output — it is in
proportions already (a quick check is that they sum to one).

Goodness of fit: The first check of the goodness of the model is the rela-
tive accuracy (see also Section 16.5). The accuracy is the number of correct
predictions divided by the number of cases. The relative frequency divides
this number by the accuracy of always selecting the modal category. For this
dataset, the modal category is Professional, with 112 out of 337 cases belong-
ing to Professionals. Thus, the relative accuracy is 169

337 /
112
337 = 1.509. Thus, this

model improves accuracy by 50% over the null model. Is this good? It de-
pends on your other models.

As Maximum Likelihood Estimation is used, the Akaike Information
Criteria score is also reported. For this model, AIC = 885. Is this good?
Again, it depends on your other models. In other words, model comparison
needs another model. I leave it as an exercise to see that the null model has
AIC = 1027. Thus, our model is much better than the null model.

Now that we have looked at our model, let us look at the parameter
estimates. According to our model, Whites have a higher probability of being
Professionals and White Collar workers than they are to be Craft or Menial
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laborers. As for education, higher levels of education are associated with
higher odds of being a Professional or a White Collar worker (both of these
are statistically significant) than being a Blue Collar worker. Finally, years of
experience are not a statistically significant predictor of job type, as none of
the coefficients are statistically significant (coefficient / standard error > 2).7

So, we have a picture of Professionals and White Collar workers, when
compared to Blue Collar workers: they are White and well educated. Not an
earth-shattering conclusion, but it is encouraging to see that our conclusions
do seem to reflect reality.

18.2: Ordinal Dependent Variable

Another variety of categorical dependent variables is ordinal. A variable is
ordinal if it is categorical and the categories have an underlying order to
them. Examples include movie ratings (number of stars), hurricane inten-
sity, and so forth.

There are actually at least four ways of handling ordinal dependent
variables:

1. Treat them as nominal. This allows us to fit ordinal data using previ-
ous techniques. Unfortunately, it is inefficient as it ignores important
aspects of the data itself.

2. Treat their cumulative level as nominal. If the ordinal variable takes
on values 1 – 5, then create nominal variables corresponding to Level
1, Levels 1 and 2, Levels 1–3, Levels 1–4, and Levels 1–5. This pre-
serves much of the underlying information, but allows us to fit it using
a previous method.

3. Assume that there is an underlying continuous process that you wish to
fit. The ordinal nature is just several threshold values along the possi-
ble values. This reduces to a pseudo-OLS, where you also need to fit the
threshold values, not just the slopes and intercepts. Using Maximum
Likelihood methods, this is trivial to solve.

7This rule of thumb comes from the fact that in a Normal distribution, the ratio needs
to exceed 1.96 to be statistically significant at the α = 0.05 level. These parameter estimates
are not guaranteed to be Normally distributed. As such, the rule of thumb is to be more
conservative. Even with the rule of thumb, do not bet the farm.
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4. Pretend that the ordinal values are continuous and fit it using ordinary
least squares or one of its offsprings. This has the advantage of being
easily fit.

Three of these ways have already been discussed, and you are quite
adept at using them (Options 1, 2, and 4). Only the third option is completely
new to you. This chapter focuses on how to fit Option Three.

18.2.1 Option Three Let us assume that there is an underlying contin-
uous process. We only experience this process through the ordinal variable.
This is very similar to how we first looked at binary variables: underlying
process exhibited only in the 0/1 outcomes. Here, there is more than just the
one threshold (which traditionally defaulted to λ = 0.500). Thus, we have
two sets of parameters to fit. The first is the parameters which describe the
process. The second is the position of those threshold values. Without going
into the details, we will use Maximum Likelihood Estimation as our fitting
method because it has many nice properties. Thus, our underlying process is

η = β0 + β1x1 + β2x2 + · · ·+ βkxk

Our thresholding process is shown in Figure 18.1. The line represents the
underlying continuous process that you are trying to model. The A, B, C,
and D represent the observed ordinal values. The threshold values, τ1, τ2,
and τ3 are the values that separate the observed ordinal values.

This model is very straight forward and understandable. The fitting
is also straight forward. The results are also straight forward.

Example 18.3. Let us use some more data from the GSS. This data explores
the ‘warmth of feeling’ the respondent has for the president. The demo-
graphic information is the gender (male), the race (white), the age, and the
number of years of education (ed). The response variable has four ordered
levels: Strongly Disagree (SD), Disagree (D), Agree (A), and Strongly Agree
(SA). Our goal is to explain a person’s feelings toward the president based
solely on demographic information.

§ § §

Now, let us fit this data with ordinal regression. The command in R is polr(),
which requires the MASS package. The actual command is

polr(warm ∼ male + white + age + ed )
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Figure 18.1: Schematic diagram of the thresholding process. The line represents the linear
continuous process. The τs represent the threshold values. A, B, C, and D represent the
ordinal outcomes.

Variables: Value Std. Error t-value
Woman 0.743 0.078 9.50
White -0.400 0.118 -3.39
Age -0.020 0.0024 -8.17
Years of Education 0.098 0.013 7.52

Thresholds:
SD — D -1.700 0.237 -7.18

D — A 0.111 0.233 0.48
A — SA 1.979 0.236 8.37

Table 18.4: Result of ordinal regression in R.

This command will give the coefficients of the underlying linear re-
gression and the threshold values separating the four categories. From Table
18.4, we see that the equation for the underlying linear process is

η = 0.743×Woman+−0.400×white+−0.020×age+ 0.098×ed
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The thresholds are also listed. The threshold between Strongly Dis-
agree and Disagree is at τ1 = −1.700. The threshold between Disagree and
Agree is τ2 = 0.111. The threshold between Agree and Strongly Agree is
τ3 = 1.979. Thus, to calculate our prediction, we calculate the prediction
based on the linear model, η, and compare that value to the intervals de-
scribed by the thresholds. Thus, for Bob, who is Male, White, 40 years old
and has 20 years of education, we have

η = 0.740× 0 +−0.400× 1 +−0.020× 40 + 0.098× 20 = 0.76

As η = 0.76, we have our prediction that Bob agrees with the president. If we
actually want probabilities that Bob Strongly Disagrees, Disagrees, Agrees,
or Strongly Agrees, we would have to back-transform using the inverse of the
logit function. Or, we could just ask the computer to do it for us:

BOB = data.frame(male=’Men’,white=’White’,age=40,ed=20)

predict(model.ol1, newdata=BOB, type="probs")

This gives the probabilities as

SD D A SA

0.0785 0.263 0.429 0.229

Thus, it is far from certain that Bob agrees (or strongly agrees) with the pres-
ident (although the probability he does is 0.429 + 0.229 = 0.658).

Accuracy: Finally, let us look at the accuracy of the model. I leave it as an
exercise to show that the relative accuracy is 1.105, which indicates that the
model is about 10.5% better than the null model (modal category is Agree).
This is not a fantastic increase in accuracy, but we do know how certain de-
mographics feel about the president: Whites tend to disagree, Males tend to
disagree, older people tend to disagree, and lesser educated people tend to
disagree.

Of course, we could have added in a quadratic education term to the
model to see if both the highly educated and the lesser educated both support
the president. I also leave this as an exercise to show that there is no evidence
of this. Thus, we can conclude that the relationship between education and
presidential support is linear.
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18.3: Conclusion

In this chapter, we examined the special issues behind fitting dependent vari-
ables that are either nominal or ordinal. Nominal dependent variables are
still basically fit with a series of logistic (or other link) regressions. The alter-
ation comes about because we need to keep the same base category through-
out in order to make our results comparable.

The ordinal dependent variable can be fit using a technique similar to
the previous chapter: fit an underlying linear function, then create thresh-
olds to divide a constant function into an ordinal response.

In both cases, predictions in R follow the typical structure, with the
addition of being able to just predict the outcome category or being able to
predict the probabilities associated with the case fitting in each bin.
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18.4: R Functions

In this chapter, we were introduced to several R functions that will be useful
in the future. These are listed here.

18.4.0 Packages

RFS

MASS

nnet

18.4.0 Statistics

multinom() This modeling function allows you to fit nominal dependent
variables. Its structure is standard in that its main argument is the
formula. In order to use the multinom() function, you must load the
nnet library.

polr() This modeling function allows you to fit ordinal dependent variables
when there is an underlying linear function that drives the process. In
order to use the polr() function, you must load the MASS package.

predict(model, newdata) As with almost all statistical packages, R has a
predict function. It takes two parameters, the model, and a dataframe
of the independent values from which you want to predict. If you omit
newdata, then it will predict based on the independent variables of
the data itself, which can be used to calculate residuals. The dataframe
must list all independent variables with their associate new values. You
can specify multiple new values for a single independent variable.

set.base()
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18.5: Extensions

This section offers suggestions on things you can practice from this chapter.
Save the scripts in your Chapter 18 folder. For each of the following prob-
lems, please save the associated R script in the chapter folder as ext0x.R,
where x is the problem number.

1. In Section 18.1.1, we fit a multinomial model to the gssocc data. The
base used was ‘Blue Collar.’ Refit the model using ‘Craft’ as the base
category.

2. Determine the AIC of the null model in Section 18.1.1.

3. As mentioned in Section 18.2.1, calculate the relative accuracy of the
model of Example 18.3.

4. As mentioned in Section 18.2.1, add a quadratic education term to the
model of Example 18.3 to see if both the highly educated and the lesser
educated both support the president.
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