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Remember that we are examining all of these differ-
ent types of regressions for one primary reason: the as-
sumptions of Ordinary Least Squares are not met by dis-
crete dependent variables. Rather than seeing this as a
problem, we can use it as an indicator that we can better
model the data and retrieve more information from the
data.

This marks the next chapter of discrete dependent
variables. In Chapter 16, we discussed binary dependent
variables — dependent variables that can only take on
two values. In this chapter, we examine count dependent
variables — dependent variables whose value represents
a count. Some examples of count variables include the
number of fires in an area, the number of deaths due to
terrorist attacks in a given year, and the number sorties
per day.

§ § §

The Troubles in Northern Ireland lasted from 1969 until
2002. In that time, over 1800 people died as a result of
terrorist actions — both republican and loyalist groups.
Six Prime Ministers of the United Kingdom — both Con-
servative and Labour — had to deal with the terrorism. If
we assume that the terrorist groups are rational actors,
then they will act to maximize their chances of achieving
their goals.

The question is whether they did — Did the PIRA
adjust its tactics in reaction to the political ideology
of the current Prime Minister? Unfortunately, the ex-
tant literature is divided on the direction of the effect.
Some research suggests that the PIRA became more
violent and killed more people when the Conserva-
tives held power. Other research suggests that the PIRA
became more violent under the Labour party. Which is it?
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For count variables, there are three identifying characteristics: the
variable can never be negative, has no theoretic upper bound, and is discrete.
If Y is a count variable, then Y ∈

{
0,1,2,3, . . .

}
.

If we just do usual linear modeling without taking these three items
into consideration, we lose information inherent in the data; we are making
assumptions about the data that are incorrect. Performing count data anal-
ysis extracts more information from the data you worked so hard to collect.
It also gives better predictions and explanations of the phenomena under
study.

17.1: Linear or Poisson Regression?

To illustrate some of these observations, let us create a count dataset, fit it
with a simple linear model, fit it with a Poisson model, and then compare
the results. The data that we will use for this example, fakepoisson, was
fabricated so that we know the parameters. As such, we can compare the
estimates we get from the two modeling techniques to the true parameters.

For this example, the true parameters are β̃0 = 0 and β̃1 = 2. Both of
these are in log units (hence the tildes). The estimates provided by the simple
linear model are β̂0 = 0.361 and β̂1 = 6.416. The estimates provided by the
Poisson regression are ˆ̃β0 = 0.154 and ˆ̃β1 = 1.925.

Beside the improvement on the estimation, there is an improvement
in model fit. The Akaike Information Criteria (AIC) score for the Poisson
model is 287.3, whereas the AIC for the linear model is 296.9. Recall that a
smaller AIC indicates a better fitting model (from Occam’s perspective).

Next, we can examine the differences in the results by looking at the
plots of the raw data and the two regression equations. The linear model
(red line) clearly does not provide as good of a fit as the Poisson model (blue
curve).

In all cases, the weakness of the linear model for this data are appar-
ent. Not only are the parameter estimates off by large factors, and the model
assumptions are not met, but the model also produces negative predictions.

17.2: The Mathematics
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Figure 17.1: Plot of the pseudo data with two regression equations overlaying. The linear
regression is in red. The Poisson regression is in blue. Note that the blue line apparently
fits the data better than does the red line. Also, note that there are eight zero values.

Count models have dependent variables that can take on only certain val-
ues: non-negative Integers. The non-negative aspect can be easily handled
by taking the logarithm of the dependent variable (but only if there are no ze-
ros). The discrete aspect must be handled through Generalized Linear Mod-
els (GLMs).

Recall that using GLMs requires that we know three things. First, we
need to know the distribution of the dependent variable. Second, we need
to know the linear predictor. Finally, we need to know the link function that
appropriately connects the two of them. The linear predictor is the same as
always: the weighted sum of our independent variables. The link function
is the logarithm function. Finally, the distribution we will use is the Poisson
distribution.

The Poisson is not the only option. The Negative Binomial distribution
can also be used, but as the Negative Binomial distribution is a bit more
complex than the Poisson, we will motivate this chapter with the Poisson
and save the Negative Binomial for Section 17.3.3.
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17.2.1 The Poisson Distribution The Poisson distribution has the fol-
lowing probability mass function (pmf):

fX(x) =
e−λλx

x!
x ∈

{
0,1,2,3, . . .

}
Again, the probability mass function (pmf) is not as important as the ex-
pected value of this distribution. Why? Remember that the Generalized
Linear Model paradigm models the expected value, E [X], not the actual out-
comes.

Calculating the expected value of the Poisson distribution is not as
easy as it was for the Binomial; it requires a trick:

E [X] :=
∞∑
x=0

xfX(x)

=
∞∑
x=0

x
e−λλx

x!

=
∞∑
x=1

x
e−λλx

x!

=
∞∑
x=1

e−λλx

(x − 1)!

= λ
∞∑
x=1

e−λλ(x−1)

(x − 1)!

= λ
∞∑
y=0

e−λλy

y!

and so, we have

E [X] = λ

This last step is correct as e−λλy
y! is the probability mass function for the Pois-

son, therefore
∑∞
y=0

e−λλy
y! = 1. Thus, the expected value of a Poisson random

variable is E [X] = λ.

Note: Recall that one of the assumptions of Ordinary Least Squares is
that the variance is constant with respect to the (expected value of the)
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dependent variable. When the outcomes are distributed as Poisson ran-
dom variables, we can actually prove that the variance is not constant
with respect to the predicted outcomes. To see this, let X ∼ P (λ). With
this, and with the probability mass function above, we can use the defi-
nition to calculate the variance of X. Without proof, the variance of X is
V [X] = λ. Yes, the variance is the same as the expected value.

Thus, the variance is a function of the expected value, and an assump-
tion of OLS is violated.

Note: That the variance is a function of the expected value also creates a
problem. Quite often, we will be dealing with data in which the variance
is not equal to, but is greater than, the expected value. Such data is termed
overdispersed. When we encounter it (Section 17.3), we will discuss what it
means and what we should do.

§ § §

Now that we understand our choice of distribution a bit better, and the re-
sulting expected value, let us examine the third facet: the link function. First,
note that λ is bounded: λ ∈ (0,∞). Thus we need a function that takes a
bounded variable and transforms it into an unbounded variable. We have
already met a link function that can handle this — the logarithm function
(see Chapter 14).

Note: Again, note that we are modeling λ = E [Y ], not the observed count. As
λ is continuous and bounded below by zero (but never equal to zero), we can
use the logarithm function as our transformation link.

And so, we have the three necessary components to use Generalized Linear
Models for count data:

• the linear predictor,

η = β0 + β1x1 + β2x2 + · · ·+ βpxp

• the distribution of the dependent variable,

Y ∼ P (λ)
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with the formula for the expected value,

µ = λ

• and the link function,
log(µ) = η

Note: Here is what you need to take away from this section: The distribution
must fit the possible outcomes. The link must translate the bounds on the pa-
rameter to the linear predictor. Both require you to know some distributions,
which is why there is an appendix for them.

17.2.2 Deriving the Canonical Link In Chapter 15, we mentioned that
each distribution has a canonical link. Let us derive the canonical link for
the Poisson distribution. The steps to determine the canonical link are the
same for the Poisson as it was for the Gaussian (Chapter 15) and Binomial
(Chapter 16):

1. Write the probability mass function (pmf).

2. Write the probability mass function in the required form.

3. Read off the canonical link.

For this distribution, this results in:

pmf :
e−λ λx

x!
= exp

[
log

(
e−λ

)
+ log(λx)− log(x!)

]
= exp[−λ+ x log(λ)− log(x!)]

= exp
[
x log(λ)−λ

1
+− log(x!)

]
This is in the required form.

Required form : exp
[
xθ − b(θ)
a(φ)

+ c(y,θ)
]
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Thus, reading off the standard form, we have the following:

• x = x

• θ = log(λ)

• a(φ) = 1

• b(θ) = λ = exp(θ)

• c(y,θ) = − log(x!)

As such, the canonical link is the log function. I leave it as an exercise to
show that E [Y ] = λ and V [Y ] = λ using the methods of Section 15.1.2.

§ § §

As mentioned in Chapters 15 and 16, we are not required to use the canonical
link. Any monotonic, increasing function that maps the restricted domain to
the unrestricted domain works. With that said, however, there are few links
better than the logarithm link in this situation.

Example 17.1. The people in many US states have the ability to formulate
binding laws by placing them before the people for a vote. This process is
called the Citizens’ Initiative. Extant theory suggests that states with a higher
population will also use the initiative process more often than states with a
lower population. Let us test this hypothesis with data (crime datafile).

As we are performing GLM modeling, we need to determine the three
needed components. First, since the dependent variable is a count of the
number of initiatives placed before the voters, we will assume that the de-
pendent variable has a Poisson distribution:

inituse ∼ P (λ)

The linear predictor will use our explanatory variable:

η = β0 + β1pop90

The link function will be the logarithm function:

log(λ) = η
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With this, we use the command

m2 <-glm(inituse∼pop90, family=poisson(link=log),

data=vcr, subset=(ccode!=93))

Now, summary(m2) tells us that there is a statistically significant re-
lationship between the state’s population in 1990 and its use of initiatives
in the 1990s. Unfortunately, the relationship is negative (β̂1 = −7.4 × 10−8),
which is inconsistent with the original hypothesis.

Let us now predict the number of initiatives that Utah would have
had during the 1990s using the fact that the population of Utah is 1,722,850.
We can do this by hand or we can use the predict() function. In either
case, we must remember to back-transform using the inverse of the logarithm
function, the exponential function. Using the latter method gives me an un-
transformed prediction of 2.0, which means the model predicts 7.4 initiatives
for Utah in the 1990s. The real value is 3.

Note: The glm command used here includes an additional parameter that we
have not discussed: subset. This parameter allows us to explicitly specify
which data to include in the analysis. Here, I removed the state with ccode
equal to 93 (California) from the analysis. The reason I did this is that a plot
of the entire data indicated that California was an outlier.

Figure 17.2 is a plot of the data, with the regression curve superim-
posed. The interesting thing is that the graph visually calls into question the
results of the GLM regression above. While the effect direction does defi-
nitely appear to be negative, it is hard to believe that this effect has such a
high level of significance (p� 0.0001). What is happening?

The problem is that the model/data is overdispersed.

17.3: Overdispersion

Recall that one result of using the Poisson as our distribution of choice is that
the residual variance and the expected value are assumed equal. Overdisper-
sion means that this is not true, that V [X] > E [X]. For a Poisson model
(and for a Binomial model), the overdispersion measure equals the ratio
of the residual deviance to the residual degrees of freedom. We use the
‘residual,’ since overdispersion is a function of the model, as well as the
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Figure 17.2: A plot of initiative use against the population of the state in 1990, with the
Poisson regression curve superimposed.

data. For the Initiative Use model (Example 17.1), the overdispersion fac-
tor is 681.68/48 = 14.2. In other words, the level of unexplained variance
is 14.2 times too high for this model (i.e., the unexplained standard error is√

14.2 = 3.77 times too high).

§ § §

Since overdispersion is a function of the model you are fitting to your data,
the first solution is to determine if you are missing some important vari-
ables (or powers of variables). Frequently, modifying your linear predictor
by adding appropriate variables will reduce the overdispersion to an accept-
able level.

Even though this is the most appropriate method in many ways, there
is an extreme danger to using this method: you may need to include too
many variables and combinations of variables to eliminate the overdisper-
sion. This results in over-fitting the data; that is, you are fitting the data
and not the data-generating process in which we are actually interested (see
Section 17.5).
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Parameter Original Adjusted

Estimate Std. Error Std. Error z-value p-value

Constant Term 2.136 0.0814 0.307 6.960 � 0.0001
Population in 1990 -7.433 ×10−8 1.743 ×10−8 6.568 ×10−8 -1.131 0.2578

Table 17.1: The results from the Poisson model, with standard errors adjusted for overdis-
persion. In the original Poisson model, the residual deviance was 681.68 and the residual
degrees of freedom was 48. Thus, the dispersion factor was 14.202. Thus, we adjust the
standard errors by multiplying the original estimates by

√
14.202 = 3.769. The calcula-

tion for the z value is the same: coefficient divided by standard error, with the new p-value
based on the adjusted z value.

Thus, if you end up including too many variables before the overdis-
persion is treated, you may want to consider other options.

The first option is to adjust the standard errors by hand. This fre-
quently works as the primary effect of overdispersion is to underestimate the
standard errors. The second option is to fit the model using a different fitting
technique, one that allows you to use the Poisson but also allows you to have
a different relationship between the mean and variance. Quasi Likelihood
Estimation is a common alternative to the usual Maximum Likelihood meth-
ods. Finally, you can fit the model using a different distribution, one that
does not require the mean to equal the variance. The Negative Binomial is a
common alternative to the Poisson.

17.3.1 Adjusting the Standard Errors This first option simply adjusts
the estimated standard errors to compensate for the overdispersion. Recall
that the dispersion factor is the ratio of the residual variance to the expected
variance. As the standard error is the square root of a variance, it would make
sense that we could ‘fix’ the overdispersion by multiplying by the square root
of the dispersion factor.

Table 17.1 presents the original standard error estimate along with the
adjusted standard errors, z-values, and p-values. Note that the 1990 popula-
tion was highly significant in the unadjusted model, but is not significant in
the adjusted model (p = 0.2578)

The strength of this method is that it is easily performed. The draw-
back is that the correction is only an approximate estimate. In the era of ex-
pensive computational times, this method was commonly used; in this time
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Parameter Original Adjusted

Estimate Std. Error Std. Error z-value p-value

Constant Term 2.136 0.0814 0.345 6.103 � 0.0001
Population in 1990 -7.433 ×10−8 1.743 ×10−8 7.492 ×10−8 -0.992 0.3261

Table 17.2: The results from the Poisson model, with standard errors estimated using
Quasi-Likelihood Estimation. Note that the coefficient estimates are the same between the
two methods. The differences are due to the re-estimated standard errors. Note, again,
that the 1990 population is no longer a statistically significant variable as it was in the
original Poisson model.

of cheap computers, not-so-much. The next two methods are more appropri-
ate in that their results are more statistically sound than this approximation.

17.3.2 Quasi-Likelihood Estimation The Maximum Likelihood Estima-
tion method makes assumptions about the relationship between the mean
and variance of the underlying distribution. For the Poisson distribution,
that relationship is the identity function; that is, E [X] = V [X]. The presence
of overdispersion indicates that this relationship is incorrect.

A different way of estimating the parameters is to use Quasi-Likelihood
Estimation (QLE). This method allows for modeling different relationships
between the expected value and variance for the distribution.

The strength of using QLE is that you can use the same distributions
with which we are familiar, and the interpretation is identical. The weakness
is that few statistical programs are able to model using this method. R can.
To model using QLE in R, we prefix the distribution with the world quasi.
Thus, we would use

glm(y∼x, family=quasipoisson(link=log))

to fit this model. This command produces the results in Table 17.2. Note
that the coefficient estimates are the same as for the Poisson model. The
difference is in the standard errors — they are increased.1 This reduction
causes our z-values to decrease, resulting in increased p-values.

Note: The only two distributions that have the QLE option in R are the Pois-
son (quasipoisson) and the Binomial (quasibinomial). These are also

1In the presence of overdispersion, the Quasi-Likelihood Estimates will increase the stan-
dard errors; of underdispersion, decrease.
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Estimate Std. Error z-value p-value

Constant Term 2.2376 0.4835 4.63 � 0.0001
Population in 1990 -1.0091× 10−7 8.1903× 10−8 -1.23 0.2179

Table 17.3: The results table for modeling the initiative use using the Negative Binomial
distribution. Note that the population is no longer statistically significant.

the two distributions that need it most often, since these two popular distri-
butions both have variances as functions of their expected value.

17.3.3 The Negative Binomial Family In the Generalized Linear Model
framework, you need to select an appropriate distribution that matches your
dependent variables. If that variable is a count, then the sole requirements
for that distribution is that the outcomes can only be discrete and non-negative.
The Poisson is the usual distribution, but it is not the only one. An alternative
distribution is the Negative Binomial. The Negative Binomial family allows
for both over- and under-dispersion in the model. It does this by assum-
ing the rate parameter λ in the Poisson is distributed as a Gamma random
variable, with parameters a and b. The strength of this formulation is that a
greater variety of variations are able to be fit.

The drawback is that interpreting the results is a bit more difficult.
However, since we make the computer do all the heavy lifting, this drawback
is minor. It does, however, introduce a new set of possible error messages
and parameters that you may have to interpret.

The other drawback is that the Negative Binomial distribution is not
a member of the exponential family. As such, it cannot be used within the
GLM paradigm (strictly speaking). With that said, fitting a model using the
Negative Binomial distribution is just as easy as it is for any of the previous
distributions.

In R, you will have to load the MASS package to use the Negative Bino-
mial family, since it has its own regression function: glm.nb(). The options
for glm.nb() are similar to those for glm() — the programmers designed it
that way. Thus, the command

m2n <- glm.nb(inituse∼pop90, data=vcr, subset=(ccode!=93))

will perform Negative Binomial regression. The first thing to notice is that
the overdispersion is no longer relevant. With this, we can have more confi-
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dence in the parameter estimates (provided in Table 17.3). The second thing
to notice is that the effect of population is still no longer statistically signifi-
cant. This agrees with our observation in Sections 17.3.1 and 17.3.2. Finally,
we notice that there are additional parameters estimated (at the bottom). The
Theta is the dispersion parameter used by the Negative Binomial regression
algorithm. The Std.Err. is the standard error of that estimate. When
Theta is 1 or statistically close to 1, there is no advantage to using the Nega-
tive Binomial over the Poisson. However, we knew that Theta was not close
to 1, since the overdispersion in the Poisson model was so high.

Note: The direction of the coefficient estimate is still directly comparable to
the other coefficients estimates we have examined. Thus, this model tells us
that there is a negative relationship between the state’s population and the
level of initiative use (although it is not statistically significant).

This model estimates that Utah will have had approximately 8 initiatives
during the 1990s. I leave it as an exercise to determine this.

17.4: Body counts

Using the above information, let us return to our opening example and use
what we have learned this chapter to come to the same conclusions regarding
our research question. This extended example will also allow us to discuss a
few things that are becoming important to our analyses.

Example 17.2. The Troubles in Northern Ireland lasted from 1969 until
2002. In that time, over 1800 people died as a result of terrorist actions —
both republican and loyalist groups. Six Prime Ministers of the United King-
dom — both Conservative and Labour — had to deal with the terrorism. If
we assume that the terrorist groups are rational actors, then they will act to
maximize their chances of achieving their goals. Because of its hierarchical
structure and large size, the Provisional Irish Republican Army (PIRA) was
best able to organize its actions to affect the elections.

The question is whether they did — Did the PIRA react to the political
ideology of the current Prime Minister? Unfortunately, the extant literature
is divided on the direction of the effect. Some research suggests that the PIRA
became more violent and killed more people when the Conservatives held
power. Other research suggests that the PIRA became more violent under
the Labour party. Which is it?
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The dataset contains just three variables of import: total (the total number
of deaths under that prime minister for the year, or part of the year), days
(the number of days during the year that the prime minister was in power),
and riteleft (the level of conservatism of the prime minister). The sec-
ond variable is necessary to control for the fact that some prime ministers
only ruled for a part of the year. The third variable is the research variable.
The first variable is the response variable (dependent variable). The basic
research model is

deaths ∼ riteleft

However, we need to deal with days, the number of days the premier
is in power. If we include days as a simple independent variable, we allow
the effects of the days variable to freely vary to fit the data. However, this
does not really make sense. If the model tells us that the coefficient estimate
for days is 2.35, what does that really mean?

It is usually better to treat days as the divisor for terrorist killings,
thus ostensibly creating a variable of killings per day. But, this is no
longer a count model (non-integer values), nor is it a proportion model (val-
ues can be greater than one). What should we do? Fear not! Through the
magic of mathematics, we can handle it.

Recall in Section 17.2 that the link function we used was the loga-
rithm: log[λ] = β0 + β1x1 + β2x2 + · · ·+ βkxk . If, instead of the expected count,
λ, we wanted to model the expected ratio, λ

days , we would have:

log
[ λ
days

]
= β0 + β1x1 + β2x2 + · · ·+ βkxk

Using one of the properties of logarithms, this is equal to

log[λ]− log[days] = β0 + β1x1 + β2x2 + · · ·+ βkxk

This, in turn, is mathematically equivalent to

log[λ] = β0 + β1x1 + β2x2 + · · ·+ βkxk + log[days]

As such, we now have a count model (the log[λ] is alone on the left) with
an additional factor (log[days] on the right). Note that there is no parameter
to estimate for log[days]. This is important in how we set up the model, as
days is not a typical variable. It is an offset variable.

Offset variables do not have parameters to estimate. They are direct
effects with no multipliers. One can think of them as being subsumed in
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Poisson Quasi-Poisson Negative Binomial

Constant Term 2.2622 2.2622 2.0363
(0.1190) (0.7071) (0.6004)

Conservatism -0.0115 -0.0115 -0.0142
(0.0011) (0.0065) (0.0093)

Days in year 0.0050 0.0050 0.0058
(0.0004) (0.0021) (0.0019)

AIC 1482.8 —— 369.5

Table 17.4: Results of three different families: Poisson, quasiPoisson, and Negative Bi-
nomial. The numbers in parentheses, below the coefficient estimates, are the standard
errors.

the constant term (which would be true if the offset variable was constant).
Most statistical programs have an offset option available when you specify
the model to be fit. In R, the offset is specified in the model call by the key-
word ‘offset’.

For lm and glm functions,

glm(pira∼riteleft, offset=log(days), data=terror)

For glm.nb,

glm.nb(pira∼riteleft, offset(log(days)), data=terror)

Option 1: Days as an independent variable: The first option is to treat the
days variable as just another independent variable. This is not the best an-
swer, as days has a specific meaning with respect to the number of terrorist
deaths. The better option is to use Option 2 (below). However, for pedagogi-
cal purposes, let us first enter days as an independent variable. Performing
regressions for each of the three count data families, we get the summarized
results in Table 17.4.

Note that the direction of each of the effects is the same. This is not
always true, especially when the variable has little effect or has no statistical
significance. However, if the variable is significant and changes effect direc-
tion, then there is something severely wrong with your research model. Also
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Poisson Quasi-Poisson Negative Binomial

Constant Term -1.8280 -1.8280 3.8744
(0.0254) (0.1495) (0.0969)

Conservatism -0.0106 -0.0106 -0.0069
(0.0011) (0.0063) (0.0041)

AIC 1479.6 —— 2080.2

Table 17.5: Results of three different families: Poisson, quasiPoisson, and Negative Bino-
mial. The numbers represent the estimated coefficients. The numbers in parentheses are
the estimated standard errors.

note that the effects are the same between the Poisson and the quasiPoisson
families. The only difference is the size of the standard errors. The quasiPois-
son will always give a better estimate of the standard errors (and of the sta-
tistical significance) than the Poisson.

Note that the Poisson model is severely overdispersed — the residual
deviance is much larger than the residual degrees of freedom (the residual
deviance is 1298, the residual degrees of freedom is 36, the overdispersion
factor is 36.06). As such, the Poisson family would be (very) inappropriate
for this model. Thus, either the quasiPoisson or the Negative Binomial model
would be preferable.

If we had just used the Poisson family, we would have concluded that
the level of conservatism of the prime minister is highly significant. However,
looking at the more-appropriate results of fitting using Quasi-Likelihood Es-
timation (or using the Negative Binomial family), we see that the effect of
conservatism is non-existent. Since the effect of conservatism on deaths was
the purpose of this research question, it is extremely important to reach good
conclusions about the effects of this variable.

As our research variable is not statistically significant at the usual
level of significance, we will not even bother to predict and graph our pre-
dictions here.

Option 2: Days as an offset variable: The second (and preferred) option
uses days as an offset (or “exposure”) variable. This makes more sense than
allowing it to freely enter the model as a typical independent variable. The
results from fitting the data with the three model families are found in Table
17.5.
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According to the results, the Poisson family is not appropriate; the
level of overdispersion is high — on the order of 35. As such, using the QLE
method or the Negative Binomial family would make good substitutes. In
the quasiPoisson model, the parameter estimates remain the same, but the
estimates of the standard errors change to reflect the overdispersion. Thus,
while the effect of conservatism was statistically significant in the Poisson
model, it was not in the quasiPoisson model (p = 0.1013).

The Negative Binomial model echoes the qualitative conclusions of
the quasiPoisson: The level of conservatism has no statistically discernible
effect on the level of deaths resulting from PIRA terrorism in the United
Kingdom during the Troubles in Northern Ireland (p = 0.0905).

17.4.1 Bettering the Fit Using the results from both the quasiPoisson
and the Negative Binomial model does offer you the ability to strengthen
your conclusions. If one result gave statistical significance and the other did
not, then you would realize that your conclusions depended on the assump-
tions you made about the underlying mechanism that produced the data, and
not on the variables you chose to include (or exclude). It is never a good place
to find yourself when your substantive results depend on the choice between
two acceptable models.

With that said, however, one should not stop here. Our formula is
rather simplistic: it states that one independent variable is all we need to
explain the dependent variable. It also assumes that the effect is linear be-
tween the independent and the dependent variable. If we believe that extrem-
ist prime ministers suffer from higher (or lower) levels of terrorist killings,
then the research formula we have cannot capture that effect. To capture that
effect, we will have to use the square (or higher powers) of the riteleft
variable.

In fact, let us examine the effects of conservatism (up to the fourth
power), plus the effects of having Labour in power, plus an interaction be-
tween having Labour in power and the level of conservatism in the Labour
government. Thus, the research model we wish to fit will be

pira = β0 + β1 riteleft+ β2 riteleft
2 + β3 riteleft

3

+ β4 riteleft
4 + β5 labour

+ β6 labour × riteleft

Of course, we would need to have good theory to provide this model, but let’s
just have fun with this.
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In most statistical programs, one would have to create new variables
for each of the powers (three new variables) and a new variable for the in-
teraction term (labour × riteleft). In R, however, we can just write the
formula to reflect what we want without having to worry about the addi-
tional step of creating new variables. As such, in R, the formula will be

pira ∼ riteleft + labour + I(riteleft∧2)
+ I(riteleft∧3) + I(riteleft∧4) + I(labour*riteleft)

The use of I() indicates that R should evaluate what is in the parentheses as
a new variable. Fitting this model using Quasi-Likelihood Estimation indi-
cates that none of the terms have a statistically significant effect. This should
not really surprise us, since there is a lot of correlation among the indepen-
dent variables in that model. In the presence of high correlation, the stan-
dard errors tend to be larger than they should be.

Since nothing was statistically significant, let us pare the model to
reduce the effect of correlation and get at some more basic effects. The best
first thing to remove from the model is the interaction term. Doing this gives
us the research model:

pira = β0 + β1 riteleft+ β2 riteleft
2 + β3 riteleft

3 (17.1)

+ β4 riteleft
4 + β5 labour+ ε (17.2)

Fitting this model using both the quasiPoisson family and the Negative Bi-
nomial family gives us the results in Table 17.6.

Notice that all of our variables are now statistically significant at the
α = 0.05 level. It turns out that the interaction term was so highly correlated
with the other variables that it made it impossible to correctly estimate the
effects of the individual research variables.

Now that we have two models that tell us, substantively, the same
story, we should show the effect of the variables of interest. There are really
only two independent variables involved here, with one being dichotomous.
As such, we can show the effects on the same graph (one graph for each fam-
ily), with two prediction curves per graph. Figure 17.3 shows the predictions
from both the quasiPoisson model (Left Panel) and the Negative Binomial
model (Right Panel). The upper curve in both cases (red) corresponds to pre-
dictions when the Conservatives are in power.
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Quasi-Poisson Negative Binomial

Intercept −12.51 −6.980
(4.478) (2.396)

Labour −4.742 −4.8430
(1.553) (0.2856)

Conservatism 1.847 1.8660
(0.07101) (0.3778)

Conservatism2 −0.03830 −0.03833
(0.01425) (0.00750)

Conservatism3 −0.002585 −0.0026070
(0.0009421) (0.0005005)

Conservatism4 −0.00007314 −0.00007361
(0.00002642) (0.00001398)

AIC —— 1787.8

Table 17.6: Results of two different models: fitting with QLE and using the Negative
Binomial family. The numbers are the parameter estimates; in parentheses, the estimated
standard errors.

17.5: The Bias-Variance trade-off

Note that the two models are completely worthless in explaining the effects of
the variables on the population (or the “data generating process”). Because
we used so many parameters, the model fits the data — noise and all — as
opposed to the underlying reality (signal). This is a common problem. Since
the goodness of our fit increases as we increase the number of variables in
our models, there is a pressure for us to increase the number of variables.
However, as in this case, using too many variables (or interactions, or powers)
usually tells us too little about the underlying process that gave rise to the
data, which is the entire purpose of performing a statistical analysis.

Note: Remember that we are only using the data (a sample) to help us better
understand the process that gave us the data (population). Fitting the data
perfectly actually tells us little about the process we are trying to model.
However, not using enough variables may not get at the process, either. This
trade-off between increasing the number of variables (which increases the re-
liance of the parameter estimates on the actual data) and reducing the num-
ber of variables (which increases the errors in our model) is termed the Bias-
Variance trade-off, and it is a problem we must keep in our minds at all times.
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Figure 17.3: Plot of the number of deaths due to terrorism, caused by the Provisional Irish
Republican Army, in the United Kingdom during the Troubles in Northern Ireland. The
points are overlayed with the quasiPoisson model (Left Panel) and the Negative Binomial
model (Right Panel). In both cases, the upper curve (red) corresponds to the prediction
when the Conservative Party is in power.

On the one hand, we want a good model that fits the population, on the other
hand, we only know the sample (the data collected).

In the terrorism example (v.s., Section 17.4), we can see that we used
too many explanatory variables in our model. A glance at the graphs in Fig-
ure 17.3 suggests that we should have gone with a quadratic model (second
power) at most, even though the quartic model (fourth power) fit the data bet-
ter. Avoiding over-fitting the data is as simple as being aware of the dataset
and the model predictions (of course, a good graph helps).

17.6: Conclusion

In this chapter, we examined what we can do when our dependent variable is
a count variable. As counts are non-negative and discrete, nothing we have
done thus far can properly handle them. While performing a log transform
of the dependent variable as we did in Chapter 14 would allow us to actually
make predictions that made sense (provided that there were no zero counts),
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the resultant model would probably violate one or more of the assumptions
of the Classical Linear Model.

Two model families were introduced to handle count data. The Pois-
son family requires that the mean and the variance be equal (which translates
to the residual deviance and the residual degrees of freedom be equal). This
is rarely the case. When the residual variance is much larger than the mean,
the data are overdispersed. The Negative Binomial family models overdis-
persed (or underdispersed) data, but it is a bit more difficult to fit with data.

As with Generalized Linear Models in general, the methods in this
section model the expected value and not the actual outcome. As the param-
eters must be non-negative, we use a log link to ensure this condition holds.
Note that we are not transforming the dependent variable, we are transform-
ing the family parameter (or parameters) — λ, in the case of the Poisson and
the quasiPoisson; λ and θ for the Negative Binomial.

The last point of this chapter was a warning about the Bias-Variance
trade-off: Including more variables fits the data better, not necessarily the
process that gave rise to the data. Fewer variables may miss both the data
and the underlying process. There is a happy medium — unfortunately, we
cannot know what it is.
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17.7: R Functions

In this chapter, we were introduced to several R functions that will be useful
in the future. These are listed here.

17.7.0 Packages

MASS

17.7.0 Statistics

glm(formula) This function performs generalized linear model estimation
on the given formula. There are three additional parameters that can
(and often should) be specified.

The family parameter specifies the distributional family of the de-
pendent variable, options include gaussian, binomial, poisson,
gamma, quasibinomial, and quasipoisson. If this parameter is
not specified, R assumes gaussian.

The link parameter specifies the link function for the distribution. If
none is specified, the canonical link is assumed.

Finally, the data parameter specifies the data from which the formula
variables come. This is the same parameter as in the lm() function.

glm.nb() As negative binomial regression is fit using different methods, it
cannot be included in the base glm() command. To use the glm.nb()
command, you must include the (very helpful) MASS package in your
script (library(MASS)). The output of the glm.nb() function is sim-
ilar to that of the normal glm() command, with the inclusion of an
estimate for θ and its standard error. If θ = 1, then the Poisson model
may be appropriate.

offset The offset function (or function parameter) allows us to include known
varying values in our regression. The variable included as an offset will
not have an effect parameter estimated for it.

predict(model, newdata) As with almost all statistical packages, R has a
predict function. It takes two parameters, the model, and a dataframe
of the independent values from which you want to predict. If you omit
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newdata, then it will predict based on the independent variables of
the data itself, which can be used to calculate residuals. The dataframe
must list all independent variables with their associate new values. You
can specify multiple new values for a single independent variable.
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17.8: Extensions

1. Example 17.2.2 mentioned that California was an outlier in this model.
First, plot the initiative data with California included. Second, ap-
propriately fit the model with California included and interpret the
coefficients. Finally, predict the number of initiatives Utah would have
(a population of 1,722,850). Save the script as ext01.R.

2. In Section 17.3.3, we fit the initiative data using the Negative Bino-
mial distribution. I made the statement that this model predicted 7.9
initiatives for Utah in the 1990s. Please graph the data, plot the predic-
tion curve, and predict the number of initiatives Utah will have in the
1990s. Finally compare the results between the model with California
and the model without California. Save the script as ext02.R

3. Go back to the last model we fit (Eqn 17.1). Consider the comments
about the model made in Section 17.5. Create a better model. Fit it
with both the quasiPoisson and the Negative Binomial. Plot graphs like
those in Figure 17.3. Comment on the differences in the predictions
between the two models. Save the script as ext03.R
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