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In our regression examples thus far, we have been
dealing with dependent variables that are continuous.
The Classical Linear Model (CLM) requires this continu-
ousness. The usual method of fitting CLMs also requires
that the dependent variable be distributed according to
the Normal (a.k.a. Gaussian) distribution. Chapter 12 dis-
cussed this and the other assumptions in detail.

Chapter 14 examined how we can handle one type of
violation of these assumptions: The dependent variable
is bounded. When the dependent variable is bounded, it
cannot be Normally distributed. As such, if your depen-
dent variable is bounded, you will have to transform that
variable into an unbounded analogue. Once this is done,
one can use the methods of the usual CLM paradigm.

We have, however, encountered some difficulties with
this transformation method. In each of our examples
from Chapter 14, the dependent variable was bounded,
but was never equal to its bound. This was necessary. If
the dependent variable ever is equal to its bound, then
the transformation function you use will return an infinite
value (either −∞ or +∞).

Thus far, we have fit the Classical Linear Model using
the Ordinary Least Squares method. In this part of the
book, we will extend the Classical Linear Model to be
more general, and we will introduce a unifying framework
allowing us to fit many different types of dependent
variables — both continuous and discrete.
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15.1: The CLM and the GLM

The Classical Linear Model (CLM) assumes that the relationship between
the dependent and the independent variables is linear and that the response
variable can take on all possible values; i.e., Y ∈ R. Furthermore, to come
to statistical conclusions, Ordinary Least Squares assumes that the errors are

Normally distributed with constant mean and variance, ε iid∼ N (0,σ2).

However, not all relationships fit this model. Statisticians who real-
ized this, modified the CLM to handle many different types of relationships,
much in the same way we have (see, e.g., Chapters 12 through 14). Thus,
if the dependent variable is continuous and bounded, we modify the de-
pendent variable. If there is heteroskedasticity in the model, we pre- and
post-multiply the variance-covariance matrix to better approximate the true
standard errors.1 If you need to weight the data based on some information
(such as reliability), you multiply by the weight matrix. And so forth.

However, there are certain types of dependent variables that cannot
be fit using this model (or fit correctly). These are the models with discrete
dependent variables. If we want to hold on to the CLM paradigm, we will
have to pretend such variables are continuous.2 Often, this assumption is
not a good one. When variables are binary, continuous approximations re-
sult in predictions that do not reflect reality. When variables are counts, the
variances are functions of the expected value and are heteroskedastic.

The Classical Linear Model can usually be altered to create good pre-
dictions.3 However, the further your variable is from being continuous and
unbounded, the more corrections you will have to make, and the more com-
plex the process of estimation and prediction becomes — even if possible.

This chapter serves to bridge the gap between the classical linear model
and the generalized linear model (GLM). In this chapter, we will regener-
ate the results from the CLM chapter, but use a different paradigm. This
new paradigm will help us understand the assumptions underlying ordinary
least squares regression. It will also serve as a basis for understanding the
assumptions of this new modeling paradigm.

1These are called ‘sandwich estimators’ and were developed by Peter Huber (1967) and Halbert
White (1980).

2This assumption may not be a bad one. If we are modeling annual income, then the discrete
variable is very close to the continuous approximation.

3While the predictions will frequently be fine, the confidence bounds will be based on assump-
tions not met by the data.
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15.2: The Requirements for GLMs

The Generalized Linear Model (GLM) is a paradigm that encompasses the
CLM and many adjustments to it.4 To accomplish this feat, the model is
generalized; that is, to make it more flexible, the model parts are named
and examined. Those parts include: the linear predictor, the conditional
distribution of the dependent variable, and the link function. While we have
already mentioned all three of these concepts, let us explore them in greater
detail before we derive the mathematical results.

15.2.1 The Linear Predictor Of the three knowledge requirements for
using Generalized Linear Models (GLMs), the linear predictor is the most
familiar. It is merely the weighted sum of your chosen explanatory variables
that you used throughout the Classical Linear Model chapters:

η := β0 + β1X1 + β2X2 + · · ·+ βkXk

The only difference is that we are providing a name for the weighted sum
(η, the Greek letter eta) and we are calling it the “linear predictor.” It is a
“linear” predictor because the expression is linear in each of the coefficients
(βi). It is a predictor because it is used to predict the expected value of the
dependent variable from the independent variables.

15.2.2 The Conditional Distribution The first new addition is the con-
ditional distribution of the dependent variable. Naming it is usually not as
difficult as it may seem — a few rules of thumb are very helpful. The dis-
tribution chosen reflects your knowledge of the domain (possible values) of
the dependent variable. If the dependent variable can take on all Real val-Dependent Variable
ues (as before), then an appropriate distribution is the Gaussian distribution
(as before).5 If the dependent variable can take on only values of 0 and 1,

4There is a modeling paradigm termed General Linear Models, which merely allows for multiple
independent variables to the CLM; technically, the CLM uses only one independent variable.
General Linear Models are rarely discussed separately from the CLM, as such there is no
abbreviation for them. However, authors that do discuss General Linear Models frequently
abbreviate them by GLM. These same authors will abbreviate Generalized Linear Models by
GLZ. Upshot: When searching for information on GLMs, make sure you are reading about
Generalized Linear Models and not General Linear Models.

5The Gaussian distribution is the eponymous distribution named for Johann Carl Friedrich
Gauss (1777–1855). We already know it as the Normal distribution. That we are using the
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Usual Canonical Treated in Distribution in
Dependent variable is . . . Distribution Link Chapter Appendix

Continuous, unbounded Gaussian Identity Chapter 15 Appendix B.3
Continuous, bounded by zero Gamma Inverse Chapter 19 Appendix B.6
Discrete, dichotomous Binomial Logit Chapter 16 Appendix A.3
Discrete, count Poisson Log Chapter 18 Appendix A.7
Discrete, limited Multinomial Logit Chapter 17 Appendix A.3

Table 15.1: A listing of several classes of dependent variables and appropriate distribu-
tions and links, and the chapter in which we discuss the variable class more closely.

then an appropriate distribution is the Bernoulli distribution (v.i., Appendix
A.2). And so forth. Table 15.1 provides appropriate distributions for several
different types of dependent variables (and the chapter in which we discuss
them). This is not an exhaustive list, nor are the listed distributions always
correct. They are just a good place to start.

Note: All of these distributions have something in common: They are
members of the exponential family of distributions. Section 15.2.4, be-
low, discusses why this family of distributions was selected and which
distributions belong to it.

The distribution is important in that it automatically restricts the outcome to
appropriate values of the dependent variable. With that said, the expected
value of the distribution is more important, as it is what we actually model
in the GLM paradigm. This may sound odd, but we did this previously with
the linear models: Our prediction line was a line of the expected value of the
dependent variable. The same is true for GLMs: The fitting routine predicts
the expected value, not the value.

15.2.3 The Link Function The third aspect you need to know in order to
use the GLM framework is the link function, which links the linear predictor
and the expected value of the distribution. If we symbolize the expected
value of the distribution as µ and the linear predictor as η, then the link
function is g(·), such that g(µ) = η.

The most important requirement for the link function is that it maps
the bounded domain of the expected value of Y to the unbounded domain of

name Gaussian reflects standard terminology in GLMs and a desire to give credit where it is
due.
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the linear predictor η. An additional requirement is that it is a bijection; thatMapping
is, the link and its inverse are both functions. It is also usual to make the link
a strictly increasing function. This forces the direction of the effect of your
variable to be in the same direction as the sign of the estimated coefficient: if
the coefficient estimate is positive, then the variable has a positive effect on
the dependent variable.

Table 15.1 lists the canonical link functions for each of the providedCanonical Link
distributions. One can use links that are not canonical — and often should
— but the canonical link is the traditional link function used. In subsequent
chapters, when an alternate link function is appropriate, we will discuss why.

15.2.4 The Mathematics* Nelder and Wedderburn (1972) formulated
the GLM paradigm to unify modeling techniques for several different classes
of problems, including logistic regression, count regression, and linear re-
gression. Starting with a member of the exponential family of distributions,
Nelder and Wedderburn created an iteratively re-weighted least squares (IRLS)
method, using Maximum Likelihood Estimation (MLE) to estimate the pa-
rameter effects. MLE remains the primary method of fitting GLMs, but other
approaches are used, including Quasi-Likelihood Estimation, Bayesian Esti-
mation, and several variance stabilization methods.

Their choice of MLE was simply one of computing ease. Remember
that the early 1970s were not a time of cheap computing power. However,
even though MLE was chosen for ease, these estimates have some helpful
properties. As such, this is still the most widely used method for fitting
GLMs, just as OLS has been the preferred method for fitting CLMs for many
decades.

Exponential Family of Distributions: The one and only requirement on
the distribution is that it belongs to the exponential family of distributions
(Nelder and Wedderburn 1974; Wood 2006). Most of the distributions we
experience belong to this family, so it is not an issue. To be a member of
this family, the probability density function (or probability mass function, if
discrete) must be writable in the following form:

f (y) = exp
[
yθ − b(θ)
a(φ)

+ c(y,φ)
]

(15.1)

To determine what each of these pieces represents, let us perform Maximum
Likelihood Estimation on this probability function. Note that the likelihood
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of the data is just the product of the probability density functions for each
datum. Thus, in symbols and for one datum, the likelihood is

L = exp
[
yθ − b(θ)
a(φ)

+ c(y,φ)
]

When doing MLE, one usually works with the log of the likelihood function,
as it is much easier to differentiate. This tendency is true for this entire family
of distributions; the log-likelihood is

l =
yθ − b(θ)
a(φ)

+ c(y,φ)

The Mean. Now, to calculate the maximum, we differentiate the log-likelihood Mean
with respect to our parameter of interest:

dl
dθ

=
y − b′(θ)
a(φ)

As we know that the expected value of this derivative is zero at its maximum,
we see that the expected value of Y is

E [Y ] = b′(θ) or

µ = b′(θ)

As such, we see that b′(θ) is the expected value of the distribution. Recall that
the expected value is important, as it is what we actually model in GLMs.

Variance. Now, if we take the second derivative of the log-likelihood func- Variance
tion, we will find that the variance of the estimate is

V [Y ] = b′′(θ) · a(φ)

The a(φ) is called the “dispersion parameter.” Infrequently, the chosen dis- Dispersion
tribution forces this to be a specific value. Usually, however, this value can
be estimated from the data. For those distributions that force this to be a
specific number, we either need to use quasi-likelihood to fit the model or we
need to test this assumption.
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Canonical Link. Next, the θ is the canonical link function. It is a function ofCanonical Link
the parameters of the distribution selected. In the Gaussian case, the canon-
ical link is the identity function, µ. In the Binomial case, the canonical link
is the logit function,

logit(µ) := log
[
µ

1−µ

]
Nuisance Parameters. Finally, c(y,φ) is a term that allows some flexibilityNuisance
to the exponential family of distributions. Without the c function, far fewer
distributions would belong to this family. Further, note that the c function
affects neither the expected value nor the variance.

15.3: Assumptions of GLMs

When we were creating ordinary least squares (OLS) regression, we made

one assumption: ε iid∼ N (0,σ2). After learning the mathematics of fitting the
models, we went back and figured out how to test these assumptions. The
same will be true here.

When performing generalized linear modeling, you make at least three
assumptions. You assume the linear predictor is correct. You assume theAssumptions
conditional distribution of the dependent variable is correct. You assume the
link function is correct. If these assumptions are not met by the data and
model, then there is information in the data that you are ignoring.

Testing these is usually not as easy as in the case of OLS regression.
The linear predictor and the link function, together, determine the functional
form. It can be tested using a runs test. That is the easy part. Testing the
correctness of the conditional distribution is much more involved. It requires
that one understands the hypothesized distribution, especially in terms of
range, expected values, and variances. Note that tests of heteroskedasticity
may not be useful here; many distributions are heteroskedastic.

The testing must be done, however.
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15.4: The Gaussian Distribution

To illustrate what we did in the previous sections, let us apply what we know
to the Gaussian distribution, determining the canonical link, the expected
value, and the variance. Hopefully, the results will not surprise us. Normal Distribution

We start with the probability density function (Appendix B.3).

f (y) =
1

√
2πσ2

exp
[
−

(y −µ)2

2σ2

]
Now, to write this in standard form. This just takes algebra and some rules
of logarithms.

= exp
[
−

(y −µ)2

2σ2 + log
(

1
√

2πσ2

)]
= exp

[
−
y2 − 2yµ+µ2

2σ2 + log
(

1
√

2πσ2

)]
= exp

[
−
y2

2σ2 +
yµ

σ2 −
µ2

2σ2 + log
(

1
√

2πσ2

)]
= exp

yµ− 1
2µ

2

σ2 + log
(

1
√

2πσ2

)
−
y2

2σ2


Recall standard form: Standard Form

f (y) = exp
[
yθ − b(θ)
a(φ)

+ c(y,φ)
]

Thus, we can see the correspondences. Thus, we have the following:

• y = y

• θ = µ

• a(φ) = σ2

• b(θ) = 1
2µ

2 = 1
2θ

2

• c(y,θ) = log
(

1√
2πσ2

)
− y2

2σ2
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Thus, the canonical link is g(µ) = µ, also known as the identity function. Note
that the dispersion parameter is the variance, a(φ) = σ2. Also note that the
expected value is

E [Y ] = b′(θ)

=
d
dθ

1
2
θ2

= θ

= µ

Hopefully, this is as we expect. Finally, note that the variance is

V [Y ] = b′′(θ)a(φ)

=
d2

dθ2
1
2
θ2σ2

=
d
dθ
θσ2

= σ2

Also as we expect, hopefully.

Other Link Functions: While the canonical link is the identity function
(g(µ) = µ), it is not the only allowable link function. In Section 14.3, we trans-Non-Canonical Link
formed the continuous dependent variable because it was bounded below by
(but never equaled) zero. In such a case, the logarithm is an appropriate link
function: The dependent variable has a restricted range. The link function
converts that range to an unbounded range. The same is true under the GLM
framework. Similarly, the logit function is frequently an appropriate link
function, as it was in Section 14.2.

With that, we start to see that for continuous dependent variables,
what we did under the CLM paradigm we can do under the GLM paradigm.
This is always true; the GLM paradigm extends the CLM paradigm to handle
different classes of dependent variables.
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15.5: Generalized Linear Models in R

In previous chapters, we performed linear modeling using the lm() function.
To perform Generalized Linear Modeling, we use the glm() function. When
one uses the Gaussian distribution and its canonical link, results between the
two methods will be identical. That is, we could have fit all of the lms with
glms and not change a thing.

Note: If one uses the Gaussian distribution and a non-canonical link,
the predictions will be very close, but not identical. The reason is that
the transformation is performed on different quantities between the two
methods.

To see this, let us revisit two old examples and use the GLM paradigm to find
the answers.

Example 15.1: The voters of Maine are being sent to the polls to vote on a
constitutional referendum (ballot measure) that proposes to limit the defini-
tion of marriage to the union of one man and one woman. This was not the
first time that Americans were sent to the polls to vote on this or a closely
related issue. Given the information from previous votes, what is the esti-
mated proportion of voters who will vote in favor of the ballot measure in
Maine?

The example asked us to estimate the proportion of voters who will
vote in favor of the ballot measure in Maine. As before, the dependent vari-
able will be propWin and the independent variables will be yearPassed,
civilBan, and religPct. For now, let us assume a linear relationship
between the independent variables and the dependent variable; that is, the
equation we will use to fit the data is

propWin = β0 + β1(yearPassed) + β2(civilBan) + β3(religPct) + ε

This is equivalent to

E [propWin] = β0 + β1(yearPassed) + β2(civilBan) + β3(religPct)

which is more clearly connected to the GLM paradigm than before.

Performing Generalized Linear Modeling in R is straight-forward (as
it is in all modern statistical packages). The function to use is glm (for ‘Gen-
eralized Linear Modeling’):

glm(propWin ∼ yearPassed + civilBan + religPct, data=ssm)
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Estimate Std. Error t-value p-value

Constant Term 0.1512 0.0659 2.293 0.0295
Year Passed (post 2000) -0.0201 0.0036 -5.618 � 0.0001
Banned Civil Unions -0.0373 0.0200 -1.868 0.0723
Percent Religious 0.0095 0.0011 8.801 � 0.0001

Table 15.2: Results table for the regression of proportion support of a generic ballot out-
lawing same-sex marriage against the three included variables. The residual deviance is
0.063072, on 28 degrees of freedom, and the AIC is -98.523. As the hypotheses were
one-tailed hypotheses, all three explanatory variables are statistically significant at the
standard level of significance (α = 0.05).

As glm returns a lot of information, we should store its results in a variable,
which I will call model.1. Once the computer computes the regression (and
all associated information), we can summarize the results in the standard
results table (Table 15.2) using the command

summary(model.1)

Notice that all three variables of interest are statistically significant at the
α = 0.05 level. Additionally, the model has a residual deviance of 0.063072
(as compared to the null deviance of 0.286802). This indicates that the model
reduced the deviance by a factor ofPseudo-R2

1− 0.063072
0.286802

= 0.7801

And, this agrees with the R2 from Section 12.4.
Thus, the equation for the line of best fit (also known as the prediction

line) is approximately

E [propWin] = 0.1512− 0.0201(yearPassed)− 0.0373(civilBan) + 0.0095(religPct)

According to this model, what is the expected vote in Maine? To answer this,
we need this information about the Maine ballot measure: yearPassed =
9, civilBan = 0, religPct = 48. With this information, and under the
assumption that the model is correct, we have our prediction that 0.42% of
the Maine voters will vote in favor of this ballot measure.

There is nothing in the previous paragraphs that differs from the anal-
ysis results from Section 12.4. This is because the Generalized Linear Model
paradigm extends the Classical Linear Model Paradigm and is equivalent to
it when the dependent variable is Gaussian distributed and the link is the
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Estimate Std. Error t-value p-value

Constant Term -1.8909 0.2898 -6.53 � 0.0001
Year Passed (post 2000) -0.0886 0.0157 -5.63 � 0.0001
Banned Civil Unions -0.2318 0.0878 -2.64 0.0134
Percent Religious 0.0475 0.0047 10.06 � 0.0001

Table 15.3: Results table of the results of ordinary least squares regression on the logit-
transformed dependent variable. The residual deviance is 0.064987, the null deviance is
0.286802, the R2 is 0.7734, and the AIC is −97.6.

identity function. We can even use the goodness-of-fit measure we devel-
oped in Chapter 12, the R2 measure. Here, however, we calculate it based on
the null and residual deviances. The null deviance is the deviance inherent
in the data (akin to the variance of the data, SST). The residual deviance is
the deviance in the data unexplained by the model (akin to the SSE).

If we wish to predict the results of a Mississippi ballot measure from
1994, which also restricted civil unions, we would still get an impossible
prediction — one that is outside logical limits. In Section 14.2, we corrected Impossible
this error by transforming the data, modeling, then back-transforming the
results. Let us see how that is done in R and with glm():

We select the logit link function for the exact same reasons we selected
the logit transformation in Section 14.2. The command to use is

model.2 <-glm(propWin∼yearPassed+civilBan+religPct,
family=gaussian(link=make.link("logit")))

Now, summary(model.2) provides the results summarized in Table 15.3.
Note that all three independent variables are more statistically significant
than in the non-transformed model, Table 15.2. Also note that the effect di-
rections are the same as before.

Finally, note that these parameter estimates are not the same as those
where we used the Classical Linear Model with a logit transformation to fit
the data in Chapter 14. If we make predictions, we see that the results are
amazingly close (Figure 15.1). As mentioned above, CLMs and GLMs give
identical results only with the Gaussian distribution and its canonical link. Identical
Here, we used the logit link.

§ § §
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Figure 15.1: A plot of the predictions across various values of religiosity comparing the
two models: CLM and GLM. Note that while the two results tables provided different
results, the prediction plots are quite close together. The curves would have been equal
only if we were to use the canonical link and the Gaussian distribution.

Let us now re-examine Example 14.2 from Chapter 14. Recall that in that ex-
ample, we were modeling a variable that was bounded below, but not above.
This led us to transform the dependent variable using the logarithm function.
Here, we fit the model with the Gaussian distribution and the logarithm link
function.Non-Canonical Link

Example 15.2: The gross domestic product (GDP) per capita is one of many
measures of average wealth in countries. If extant theory is correct, then
the wealth in the country is directly affected by the level of honesty in the
government — countries with high levels of honesty (low levels of corrup-
tion) should be wealthier than those with low levels of honesty (high levels
of corruption). Furthermore, if theory is correct, the level of democracy in a
country should also influence the country’s level of wealth — countries with
higher levels of democracy should be wealthier than countries with low levels
of democracy. Let us determine if reality (in the form of the data in gdpcap)
supports the current theory or if current theory needs to explain the severe
discrepancies.
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Estimate Std. Error t-value p-value

Constant Term 8.1595 0.1546 52.77 � 0.0001
Level of Democracy -0.0452 0.0061 -7.44 � 0.0001
Honesty in Government 0.3335 0.0219 15.20 � 0.0001

Table 15.4: The results table from fitting the GDP data using Generalized Linear Models
(cf. Table 14.3). Note that both independent variables are significant at the α = 0.05 level
here (highly significant).

The process of fitting this model with a GLM should be getting rote
by now as it is so similar to fitting with a CLM. The R command is

glm(gdpcap ∼ democracy + hig,

family=gaussian(link=make.link("log")))

To see the results, we perform a summary() call. The results of that call
are provided in Table 15.4. Note that both independent variables are highly
significant at the usual level of significance, α = 0.05. Furthermore, the effect
directions are the same as in the CLM model (Table 14.3).

Note: For some link functions, R allows you to skip the “make.link” por-
tion. The log link is one of those for the Gaussian. Thus, the following
command would also work:

glm(gdpcap ∼ democracy + hig, family=gaussian(link="log"))

To predict the GDP per capita for Papua New Guinea, we repeat the
same steps as when we were fitting CLMs: predict, then back-transform.
Thus, the one-line prediction statement will be

PNG <- data.frame(hig=2.1,democracy=10)

exp(predict(m2,newdata=PNG))

The predicted GDP per capita for Papua New Guinea was $2678 when fitted
with the CLM. For this model, the prediction is $4481. Thus, the predic-
tion for Papua New Guinea is higher using GLMs than when using CLMs.
Looking at the prediction graph (Figure 15.2), we see that GLM predictions
are lower than CLM predictions for certain values of the dependent variable
(and larger for others).
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Figure 15.2: A plot of the two prediction curves, corresponding to the model fit using the
Classical Linear Model and the Generalized Linear Model. Note that the two prediction
curves are similar.

15.6: Conclusion

This chapter introduced the Generalized Linear Model paradigm, which is
an extension of the Classical Linear Model paradigm from the previous two
chapters. The advantage of the GLM paradigm is that more classes of de-
pendent variables can be fit. The disadvantage (if we can call it that) is that
we need to understand our data and model better. The three things we need
to know are the linear predictor, the distribution of the dependent variable,
and the function that links the expected value of the distribution with the
linear predictor.

We tied this chapter to the previous chapters by showing that a GLM
model using the Gaussian distribution (and the identity link) is equivalent
to using the CLM. Three examples showed that the steps in modeling using
the Generalized Linear Model paradigm are very similar to the steps used in
modeling using the Classical Linear Model paradigm.

This chapter actually marked a major departure in how we see our
data. Before, whenever a datum was different from our prediction, we viewed
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it as an error. Now, we realize that this variation is simply due to random
fluctuations. We know this because we realize that our dependent variable is
a random variable.

In the next chapters in this part of the book, we will examine more
classes of dependent variables: binary, limited discrete (both nominal and or-
dinal), count, and non-negative continuous. As we examine these classes, pay
attention to the selected distribution and the possible link functions. Table
15.1 provides several of the distributions and their canonical link functions.
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15.7: End of Chapter Materials

15.7.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Statistics:

lm(formula) This function performs linear regression on the data, with the
supplied formula. As there is much information contained in this func-
tion, you will want to save the results in a variable.

glm(formula) This function performs generalized linear model estimation
on the given formula. There are three additional parameters that can
(and often should) be specified.

The family parameter specifies the distributional family of the depen-
dent variable, options include gaussian, binomial (this chapter),
poisson (next chapter), gamma, quasibinomial, and quasipoisson.
If this parameter is not specified, R assumes gaussian.

The link parameter specifies the link function for the distribution. If
none is specified, the canonical link is assumed.

Finally, the data parameter specifies the data from which the formula
variables come. This is the same parameter as in the lm() function.

predict(model, newdata) As with almost all statistical packages, R has a
predict function. It takes two parameters, the model, and a dataframe
of the independent values from which you want to predict. If you omit
newdata, then it will predict based on the independent variables of
the data itself, which can be used to calculate residuals. The dataframe
must list all independent variables with their associate new values. You
can specify multiple new values for a single independent variable.
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15.7.2 Exercises and Extensions This section offers suggestions on things
you can practice from just the information in this chapter. As the purpose of
this chapter was to introduce Generalized Linear Models and emphasize that
everything we have done thus far can be done with GLMs, all of the extension
questions are from previous chapters. For each of these, use the Generalized
Linear Model paradigm (and the glm() function. Please save all scripts in
the chapter folder.

Summary:

1. What are the three aspects of your model that must be known before
using generalized linear models?

2. When doing ordinary least squares regression, what were these three
aspects?

3. How does the canonical link function differ from a link function?

4. What is a(φ) for the Gaussian distribution?

Data:

5. Now that you have a full dataset from Problem 9, Chapter ??, use
church attendance in lieu of state religiosity in a new model, called
model.x. What is the expected proportion of the vote in favor of the
ballot measure in Maine using this dataset?

6. Now, note that the value for Iowa is 46% weekly church attendance. If,
in the year 2012, the voters of Iowa were faced with a ballot measure
defining marriage as one man plus one woman, but not restricting civil
unions, what is the probability that it will pass?

7. Calculate a 95% confidence interval, with the transformed SSM Vote
model, for predicting Maine’s vote. Is the actual outcome within the
95% confidence interval?

8. The logit transformation is not the only possible choice as a link for
proportion data, there is also the asymmetric complementary loglog
transformation (cloglog() in the RFS package). Use this function as
the link function to predict Maine’s vote, its 95% confidence interval,
and the probability of the SSM ballot measure passing. The inverse of
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the complementary log-log transform has no name, but the R function
is cloglog.inv(), also in the RFS package.6

9. Estimate the GDP per capita for Papua New Guinea. For this problem,
use the untransformed model. Also, calculate a 95% confidence inter-
val for thsi estimate. How close is this estimate to the real answer, and
it the real answer within the predicted confidence interval?

10. Estimate the GDP per capita for Papua New Guinea. For this problem,
use the transformed model. Also, calculate a 95% confidence interval
for thsi estimate. How close is this estimate to the real answer, and it
the real answer within the predicted confidence interval?

11. Compare and contrast the results of your Papua New Guinea estimates
(Problems 9 and 10). Which model works best for Papua New Guinea?
Which model works best overall?

Monte Carlo:

12. Using the results from Problem 5, what is the probability that the ballot
measure will pass in Maine?

6The RFS package does not exist at this time. You may import the functions to your R session
by using the source command and the URL to the function on the book’s website.
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