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The previous chapter introduced us to ordinary least
squares and its assumptions. Bounded data will, by defi-
nition, violate the assumption that the residuals are Nor-
mally distributed. So, how do we deal with bounded data?
We transform it using a bijective function (one-to-one and
onto). This chapter deals with the two types of bounded-
ness and the appropriate bijective functions to use.

§ § §

The voters of Maine are being sent to the polls to vote
on a constitutional referendum that proposes to limit the
definition of marriage to the union of one man and one
woman. This was not the first time that Americans were
sent to the polls to vote on this or a closely related issue.
Given the information from previous votes, what is the
estimated probability that this ballot measure will pass in
Maine?
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In the previous chapter, we re-introduced linear modeling. In this chapter,
we continue our treatment of linear modeling, but we begin to deal with
some violations of the assumptions, thus extending the usefulness of this
method.

The Ordinary Least Squares method (OLS) assumes that the error terms
are Normally distributed. But, what happens when this is not true? Depend-
ing on the type and the severity of the violation, there are essentially three
ways of handling it: First, you can ignore it. Ignoring this violation is usually
not too bad when you are dealing with interpolation as the increase in bias
and the loss of efficiency are usually minor. However, if the predictions are
important, you definitely should not ignore this violation.

Second, we can use other methods (and modeling paradigms) for per-
forming regression. Two popular alternatives to the Classical Linear Model
paradigm are Generalized Linear Models (GLMs) and Generalized Additive
Models (GAMs). The former paradigm will be covered in Chapters 15 through
19; the latter, well examined in Wood (2006). The strength of these mod-
els is that they extend the CLM to include (for instance) discrete dependent
variables and non-linear relationships (Nelder and Wedderburn 1972; Wood
2006). These unified paradigms allow the computer to estimate the effect
coefficients using a single method (called Maximum Likelihood Estimation).
The drawback is that not all problems lend themselves to fitting using Max-
imum Likelihood Estimation (MLE). Luckily, most do.

Finally, you can transform the dependent variable into something more
Normal-esque than before. These transformations are very flexible. Once
you get used to working in two different systems of units, you can easily use
transformation methods to ‘Normalize’ many restricted dependent variable.
Unfortunately, one cannot transform an arbitrary dependent variable; there
are types that cannot be fit using this technique, such as discrete variables.
To handle these types of dependent variables, we will need to introduce a
new modeling paradigm (Chapter 15).

14.1: The Issue of Boundedness

We finished Chapter 12 with a model of vote proportions for ballot measures
concerning single-sex marriage. We applied that model to an upcoming vote
in Maine to predict the outcome. Finally, we used Monte Carlo methods to
predict the probability that the ballot measure would pass. In the end, we
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Estimate Std. Error t-value p-value

Constant Term 0.1512 0.0659 2.293 0.0295
Year Passed (post 2000) -0.0201 0.0036 -5.618 � 0.0001
Banned Civil Unions -0.0373 0.0200 -1.868 0.0723
Percent Religious 0.0095 0.0011 8.801 � 0.0001

Table 14.1: Results table for the regression of percent support of a generic ballot outlaw-
ing same-sex marriage against the three included variables. This is a replication of Table
12.4.

predicted that the ballot measure had a 20% chance of passing, with a point-
prediction of 42% of the voters in favor of the bill.

Results from extension problem EP12.7, however, suggest that there
may be something inherently wrong with this model. To see this more clearly,
let us predict the proportion of voters in support of a hypothetical 1994 bal-
lot measure in Mississippi (religious precent = 85) that also banned civil
unions (the results table from our SSM Vote model is replicated in Table
14.1).

From the results summarized in the table, the point-prediction for this
1994 Mississippian ballot measure is

p̂ = 0.1512 +−0.0201(yearPassed) +−0.0373(civilBan) + 0.0095(religPct)

= 0.1512 +−0.0201(−6) +−0.0373(1) + 0.0095(85)

= 1.0379

Thus, this model predicts that the ballot measure will pass with over 103%
of the vote — a physically impossible outcome. What went wrong? How can
we fix this model so that this cannot happen?

First, nothing “went wrong,” per se. The model did exactly what it was
supposed to do. The prediction, however, is based on a linear model. With
linear models, we can always find large enough (or small enough) values for
the independent variables to make the prediction arbitrarily large or small.
When we are predicting a dependent variable that is bounded in theory, this
will lead to an impossible prediction. Thus, the issue is with the linear aspect
of the prediction equation and with the bounded nature of the dependent
variable (bounded below by 0 and above by 1).

Thus, to improve the model, we only need to eliminate its bounded-
ness; that is, we need to change the dependent variable so that all values
make physical sense. This is done through the process of variable transfor-
mation. There are three steps: First, transform the dependent variable from
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Level Units: Y P

Transform: ỹ = f (y) ↓ ↑ Back-transform: p = f −1(p̃)

Transformed Units: Ỹ −→ P̃
regression

Figure 14.1: Schematic of a variable transformation procedure, such as described in the
text. Here, Y is the original values of the dependent variable, Ỹ is the transformed values
of the dependent variable, P̃ is the result from the regression in transformed units, and P
is the result in the original (level) units.

a restricted range to an unrestricted range. Second, perform the analysis on
this transformed variable. Finally, back-transform the results into the origi-
nal units.

The overview of this plan is shown in Figure 14.1. The key is the
transformation. It must change the range of Y from its current limits to an
unlimited version, denoted Ỹ . Luckily, there are two transformations that
take care of most of our needs: the logit (loh’-jit) and the logarithm transfor-
mations.

14.2: Data Bounded by 0 and 1

One type of data you may come across in your research is proportion data,
data where the values are bounded below and above (by 0 and 1, respec-
tively); that is, if Y is the dependent variable, then 0 < Y < 1. The (arguably)
best function that transforms this bounded domain into an unbounded range
is the logit function:

ỹ = logit(y) := log
(
y

1− y

)
(14.1)

The logit function transforms variables bounded by 0 and 1 into unbounded
variables; in symbols,

logit : (0,1) 7→R

The logit’s inverse, which transforms it from logit units back into level
units is called the logistic function:

y = logistic(ỹ) :=
1

1 + exp(−ỹ)
=

exp(ỹ)
1 + exp(ỹ)

(14.2)
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The logistic function transforms unbounded variables into variables bounded
by 0 and 1:

logistic : R 7→ (0,1)

Other transforms are available, but the logit is frequently used for the
following three reasons:

1. The transformation and its inverse are both functions (the transform is
a bijective function). This means that the results are always commen-
surate to the original problem.

2. The transformation is symmetric. This means that the ‘stretching’ is
the same for values near 0 as they are for values near 1.

3. The function is exact, as opposed to the probit transform which re-
quires numerical approximations. This increases the speed and accu-
racy of your predictions.

A careful reader will note that the domain of Y includes neither 0 nor 1. This
is because there is no way of transforming a (semi-) closed interval into an
open interval such as R while ensuring that the inverse is also a function.
This is a provable fact of mathematics (Strichartz 2000).

But, what do we do if there are y-values that are zero (one)? One
solution is to add (subtract) an extremely small number, ε, to the zero (one).
A second solution is to completely drop those data from the analysis. A third
solution is to change the proportion into a count and use a different paradigm
(Chapter 17).

Note: None of these solutions is perfect. If you insist on using the CLM, then
you should do all three and see how much your answer changes. A general
rule of thumb is that if your underlying research model is correct then the
results should not vary wildly based on similar models. That is, if we know
Y depends on X1 and X2, then all appropriate modeling techniques should
give approximately the same results. If they do not, then there is something
seriously wrong with our assumptions about the underlying relationships —
the model.
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Estimate Std. Error t-value p-value

Constant Term -1.7429 0.3553 -4.91 � 0.0000
Year Passed (after 2000) -0.0914 0.0165 -5.56 � 0.0000
Contains a Civil Union Ban -0.2007 0.1020 -1.97 0.0590
Percent Religious in State 0.0450 0.0060 7.49 � 0.0000

Table 14.2: Results table of the results of regression on the dependent variable, using a
logit link in the GLM. In this model, the residual deviance is 0.064987, the null deviance
is 0.286802, the R2 = 0.7734, and the AIC = −97.6.

In reality, a final option (and the best) is to admit that this method is not ap-
propriate and to use a more appropriate method, such as logistic regression
(Chapter 16).

Example 14.1: The voters of Maine are being sent to the polls to vote on a
constitutional referendum that proposes to limit the definition of marriage
to the union of one man and one woman. This was not the first time that
Americans were sent to the polls to vote on this or a closely related issue.
Given the information from previous votes, what is the estimated probability
that this ballot measure will pass in Maine?

Let us now answer this question more correctly. Recall that without
performing a transformation of the dependent variable, there existed pre-
dictions which fell outside reality. To fix this, let us transform the dependent
variable using the logit function, repeat the analysis, back-transform these
transformed results to the original units, and compare results.

The first step is to transform the dependent variable. As the depen-
dent variable is a proportion, let us use the logit transform (from the RFS

package). If we decide to call the new variable logitWin, then the command
will be

logitWin <- logit(propWin)

Now, this is our new dependent variable. As such, we perform the same
analysis as in Chapter 12:

model.lgt <- lm(logitWin ∼ yearPassed + civilBan + religPct)

The summary(model.lgt) command provides the results summarized in Ta-
ble 14.2. Note that all three independent variables are more statistically sig-
nificant than in the non-transformed model, Table 14.1. Also note that the
effect directions are the same as before.
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Level Units: propWin vote.me

logit() ↓ ↑ logistic()

Transformed Units: logitWin −→ model.lgt
lm()

Figure 14.2: Schematic of the variable transformation procedure used in Example 14.1.
Note that the results table, Table 14.2, displays the coefficients of model.lgt, which
is in the transformed units, not the original units. As such you cannot compare these
magnitudes with the magnitudes in Table 14.1.

Note: You cannot directly compare the magnitudes of these coefficients with
the magnitudes of the previous coefficients; these effect estimates are in dif-
ferent units. The coefficients seen in Table 14.1 predict in the original units
(proportions). The coefficients in Table 14.2 predict in logit (of proportions)
units. Furthermore, merely taking the logistic of the coefficients will not put
them in level units; the transform is non-linear, as we designed, thus the
effect of any depends on the values of all. In order to compare the two mod-
els, we need to perform predictions (remembering to back-transform them).
Refer to Figure 14.2 for the steps we use in this example.

Predicting the proportion of the vote for the Maine ballot measure is almost
as easy as it was before. The only additional step is that we need to back-
transform the prediction to get it in proportion units.

So, according to this transformed model, what is the expected vote in
Maine? To answer this, we need the Maine information: yearPassed = 9,
civilBan = 0, religPct = 48. With this information, and under the as-
sumption that the model is correct, we have our prediction of -0.4091 logits.
Back-transforming this value gives a prediction of logistic(−0.4091) = 40% of
the population will vote in favor of this ballot measure — slightly different
from our original prediction of 42%.

However, remember that the original question was not this point es-
timate, it was a probability of the ballot measure passing. To determine this
probability, we just need to repeat the same steps as we did answering this
question before (Section 12.4.5), but remembering to back-transform the re-
sults.

The Monte Carlo results of the transformed model indicate that there
is a 15% chance that the ballot measure will pass in Maine. The histogram
of all million predictions is presented as Figure 14.3. From this information,
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Figure 14.3: Histogram of the results of the Monte Carlo experiment described in the
text. Note that the distribution has a slight right-skew as a result of the transformation
process. Also note that there are no predicted vote outcomes less than 0 or greater than
1, as compared to the original untransformed model of Chapter 12. In fact, the lowest
prediction is 9.03%, while the largest is 81.63%.

we can conclude that there is a slight chance that the SSM ballot measure
will pass in Maine (15%), with a predicted 40% vote in favor. If we were into
betting, we could also conclude that this model predicts that the odds of this
ballot measure passing is 1.00−0.15

0.15 , 5.67-to-1 against.

14.3: Data Bounded Below by 0

When the data is proportion data (bounded by 0 and 1), we can use the
logit function to transform it into an unbounded variable, perform the usual
analysis, and back-transform those results into level units. However, not all
bounded variables fit this description, e.g., age, height, income. Such vari-
ables are bounded below by 0, but have no theoretical upper bound. For such
variables, we use the log transform.

The logarithm function transforms variables bounded below by 0 into
unbounded variables; in symbols, log : (0,∞) 7→ R. Its inverse is the expo-
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nential function, exp : R 7→ (0,∞) . Both functions are bijections and so are
appropriate functions for transforming our variables.

Example 14.2: The gross domestic product (GDP) per capita is one of many
measures of average wealth in countries. If extant theory is correct, then
the wealth in the country is directly affected by the level of honesty in the
government — countries with high levels of honesty (low levels of corrup-
tion) should be wealthier than those with low levels of honesty (high levels
of corruption). Furthermore, if theory is correct, the level of democracy in a
country should also influence the country’s level of wealth — countries with
higher levels of democracy should be wealthier than countries with low lev-
els of democracy.

Let us determine if reality (in the form of the data in gdpcap) sup-
ports the current theory or if current theory needs to explain the severe dis-
crepancies. Furthermore, let us predict the GDP per capita for Papua New
Guinea and provide a 95% confidence interval for that prediction.

I leave it as an exercise for you to model the data without transform-
ing the dependent variable and discovering the predicted GDP per capita for
Papua New Guinea is -$2337, which is not physically possible (EP14.7). If
nothing else, this prediction should tell you that the data needs transforma-
tion before being modeled.

The process to estimate the GDP per capita in Papua New Guinea is
formulaic for us by now: transform the dependent variable by applying the
logarithm function, model the transformed variable, predict in the trans-
formed units, back-transformed into level units — here, dollars.

One feature of R that is shared by few other statistical packages is
that you do not have to actually create a new variable; you can perform the
transformation within the modeling command; e.g.,

model.log <- lm(log(gdpcap) ∼ democracy + hig)

The results table for this model is provided in Table 14.3. Again, as we have
transformed the dependent variable, the coefficients are not in units of dol-
lars. As such, their magnitudes cannot be directly compared to those in the
untransformed model, EP14.7. Their directions, however, can be directly
compared. Thus, this model tells us that higher levels of honesty in gov-
ernment correspond to countries with higher GDPs per capita. Additionally,
countries with higher democracy scores correspond to countries with lower
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Estimate Std. Error t-value p-value

Constant term 6.9333 0.1479 46.89 � 0.0001
Level of Democracy -0.0028 0.0113 -0.25 0.8055
Honesty in Government 0.4702 0.0359 13.11 � 0.0001

Table 14.3: Results table for the GDP per capita modeling exercise. As the model is a
transformed model, these effects estimates are not in units of dollars.

GDPs per capita. This last finding, which conflicts with current theory, is not
statistically significant at the usual α = 0.05 level.

With this model, we can estimate the GDP per capita in Papua New
Guinea using the standard method, but remembering that we must back-
transform the final estimate. That is, if we used the commands

PNG <- data.frame(hig=2.1,democracy=10)

est <- predict(model.log, newdata=PNG)

then we would report our estimate of Papua New Guinea’s GDP per capita as
exp(est), which is $2678.

The question asked us to calculate the prediction, but to also provide
a 95% confidence interval for that prediction. To do this, we must again use
Monte Carlo methods. The steps are all the same, with the additional step of
back-transforming the predictions (Line 18).

1 set.seed(3)
2 outcome <- numeric()
3 trials <- 1e6
4
5 b.int <- 6.933298
6 b.dem <- -0.002776
7 b.hig <- 0.470225
8
9 s.int <- 0.147873

10 s.dem <- 0.011253
11 s.hig <- 0.035855
12
13 e.int <- rnorm(trials, m=b.int, s=s.int)
14 e.dem <- rnorm(trials, m=b.dem, s=s.dem)
15 e.hig <- rnorm(trials, m=b.hig, s=s.hig)
16
17 outcome <- e.int + e.dem*10 + e.hig*2.1
18 pred <- exp(outcome)

The assignments in Lines 5–11 are the coefficient estimates and standard er-
rors from the model (Table 14.3). The histogram of these results are provided
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Figure 14.4: Results of the Monte Carlo experiment predicting the GDP per capita for
Papua New Guinea and its 95% confidence interval. Note that 5% of the predictions
fall in the red region, 2.5% above and 2.5% below. The median of this distribution is
designated by x̃.

in Figure 14.4. To calculate a 95% confidence interval for our prediction, we
merely find the values of pred for which 2.5% and 97.5% of the data are less.

To determine these bounds by hand, we merely list out all of the mil-
lion predictions, sort them from lowest to highest, then pick out the predic-
tion at 0.025× 1,000,000 = 25,000 and at 0.975× 1,000,000 = 975,000:

sort(pred)[25000] and sort(pred)[975000]

Alternatively, we can use the quantiles function:

quantiles(pred c(0.025,0.975))

From this, we can conclude that our model predicts the GDP per capita for
Papua New Guinea is $2678, with a 95% confidence interval being $1807 to
$3973. It is interesting to note that the actual GDP per capita in Papua New
Guinea is $2400, which is well within our confidence interval.

Note: Here, I use the prediction as the point estimate for the GDP per capita
of Papua New Guinea. It would have also been appropriate to use the mean
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of the Monte Carlo trials ($2733) or the median of the Monte Carlo trials
($2680). All three are acceptable measures of the center. It is usual, however,
to use the original prediction.

14.4: Additional Bounds

Thus far, we have looked at transformation of a dependent variable when
it is bounded above and below by 1 and 0, and when it is only bounded
below by 0. Other bounds are possible. In this section, we figure out how to
handle all types of bounds. The basic steps are to determine if the variable is
bounded on one side or two. If one, then perform an algebraic transformation
so that the new variable is bounded below by 0, then use the log transform.
If two, then perform an algebraic transformation so that the new variable
is bounded by 0 and 1, then use the logit transform. In either case, you
will need to remember to back-transform the predictions with this algebraic
transformation.

Note: The only bounds I have come across in my own research are those
bounded by 0 and 1, bounded by 0 and 100 (percentages), and bounded be-
low by 0. The quick solution for percentages is to divide them by 100 to
make them proportions, then multiply the predictions by 100 to turn the
predictions back into percentages.

14.4.1 Bounded by L and U What if our data has a theoretic lower bound
L and a theoretic upper bound U? As it is bounded above and below, we will
change it into a proportion and using the logit transform as in Section 14.2,
remembering to back-transform with the additional transformation. The al-
gebraic transformation is

a(y) = p =
y −L
U −L

The back-transform is

a−1(p) = y = p(U −L) +L

Example 14.3: The scores on the quantitative portion of the Graduate

Record Examination (GRE) range from L = 200 to U = 800. If we wished
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to properly model a person’s GRE quantitative score, we would first subtract
200 from each score, then divide by 800−200 = 600. The new variable would
range from 0 to 1, a proportion.

Example 14.4: The grade point averages (GPAs) are bounded below by L =
0 and above by U = 4. To appropriately model GPAs, we would have to
subtract 0, then divide by 4. This new variable would now be a proportion.

14.4.2 Bounded Below by L It may be that your dependent variables
is bounded below by a specific value, L, but not bounded above. As it is
bounded on only one side, we will transform it into a variable bounded be-
low by 0 and then apply the logarithm transform as in Section 14.3, remem-
bering to back-transform with the additional transformation. The algebraic
transformation is

a(y) = p = y −L

The back-transform is
a−1(p) = y = p+L

Example 14.5: Hourly workers make at least $7.25 per hour. To model

hourly wage, we would subtract off L = 7.25 from each hourly wage. This
new variable is bounded below by 0, so we can apply the log transformation
to it.

14.4.3 Bounded Above by U It may be that your dependent variable is
theoretically bounded above by U . As there is only one bound, we will per-
form an algebraic transformation so that it is bounded below by 0 and then
apply the log transform as in Section 14.3, remembering to back-transform
with the additional transformation. The algebraic transformation is

a(y) = p =U − y

The back-transform is
a−1(p) = y =U − p

Example 14.6: In the ocean, different species live at different depths. In fact,

we can predict the depth based solely on the species observed. Ocean depth is
bounded above by 0 and has no theoretic lower bound (although it certainly
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has a genuine lower bound at the Challenger Deep in the Mariana Trench,
which has a depth of -35,994 ft). To transform the depths into a variable
upon which we can perform a log transform, we subtract each value from
U = 0. After we predict, we will have to back-transform by again subtracting
each prediction from U = 0.

Of course, the transformation in this last example is equivalent to
measuring depth in terms of ‘distance below the surface’, which is a posi-
tive number requiring no additional transformation.

Example 14.7: Free and fair elections are one of the requirements for a
legitimate democratic system; furthermore, being a legitimate democratic
State is necessary for some forms of external assistance. As such, many not-
so-democratic States wish to appear democratic. They hold elections, but the
elections are either fraudulent or the electoral system (rules governing the
elections) is unfair.

There are many definitions for fairness in an election, but they all
contain the same requirement that a person’s vote has the same probability of
being counted as anyone else’s. In other words, the probability of a vote being
invalidated is independent of the characteristics of the person casting the
vote — including who the vote was for. This aspect of fairness can actually
be tested in elections where the number of invalidated votes is counted: If the
proportion of the vote for a specific candidate or position is not independent
of the proportion of the vote invalidated in the electoral division, then there
is evidence against the assumption of fairness.

Does the 2011 independence referendum in southern Sudan indicate
an issue with fairness?

As one of the conditions to the 2005 Naivasha Agreement, which ended
the civil war in Sudan, the South was allowed to vote on independence from
the North. That referendum was held between January 9–15, 2011. Official
results stated that 98.83% of the South Sudanese voted against unity and in
favor of independence.

The xsd2011referendum data contains the number of votes in fa-
vor of independence (Secession), the number of votes declared invalid
(Invalid), and the total number of votes cast (Votes). Because we need
to determine if there is a (linear) relationship between the proportion of the
vote for a specific side and the proportion of the vote invalidated in the elec-
toral division, and because we just have vote counts, we need to create the
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Figure 14.5: A scatterplot of the results of the 2011 referendum on independence for
South Sudan. Note the apparent presence of a relationship between these two variables.
As such, there appears to be evidence that the election was not fair for those voting against
independence.

proportions by dividing the independence votes and the invalid votes by the
total number of votes (cf Section 14.4.1).

Once that is done, we need to transform these proportions using the
logit transformation, perform linear regression, and check for a relationship.
If one exists in the transformed variables, then one exists in the untrans-
formed variables. First, however, it is always a good idea to plot the variables
to see if there is an obvious answer to the question. Figure 14.5 a the plot of
proportion of the vote invalidated against the proportion of the vote in favor
of independence.

Suggested by the plot, there appears to be a strong relationship be-
tween the two variables, evidence of an election that is not fair. Because
of the direction of the slope, it appears as though those areas voting most
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Estimate Std. Error t-value p-value

Constant term 1.3924 0.6613 2.11 0.0386
Proportion of Vote for Independence -8.5511 0.7212 -11.86 � 0.0001

Table 14.4: Results table for the South Sudan referendum. The results are in logit units.
note the high level of statistical significance in the effect of the proportion of the vote in
favor of independence. This is very indicative of a lack of fairness in the election.

strongly in favor of independence had a much lower probability of having
their votes rejected.

Note: As we are using the logit transform, we must drop any electoral
division (here, county) which has zero invalid votes or zero votes in favor
of secession. To easily do this in R, we can use the which function, which
determines which entries have the provided condition. Thus,

which(xsd$Invalid==0)

returns a vector of values
{
15,19,23,24,28,46,47,49,50,57,72,73

}
. These

numbers correspond to the counties that had zero invalid votes cast. Stor-
ing this vector in the variable dr allows us to remove those counties from
any subsequent calculations. As such, our proportion calculations are:

p.ind <- xsd$Secession[-dr]/xsd$Votes[-dr]

p.inv <- xsd$Invalid[-dr]/xsd$Votes[-dr]

The negative signs tells R to return values in the vector other than these en-
tries.

The results of the linear regression on the transformed dependent
variable are given in Table 14.4. There is a very strong relationship between
the proportion of the vote invalidated in the county and the proportion of the
vote in favor of secession: Those counties with a greater proportion of people
voting for independence also had a lower proportion of the vote invalidated.
That there is a strong relationship between these two variables is troubling.

To make this relationship more obvious, and to make our point stronger,
we can plot the data, the prediction curve, and the 95% confidence bands on
the same plot.

Note: What confidence intervals are for univariate data, so are confidence
bands for bivariate data.
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§ § §

In R, the philosophy behind graphing is to start with a fresh plot and paint
successive layers on top of it. This allows us to create graphs that tell the
story and to do so easily. To make the graph described above, we need to

1. Plot the points (displayed in proportion units),

2. Plot the prediction curve (displayed in proportion units, but calculated
in logit units),

3. Plot the 95% confidence bands (displayed in proportion units, but cal-
culated in logit units).

The first step has been done already (Figure 14.5):

plot(p.ind,p.inv)

The second step requires the repeated use of the predict function.
First, to make things easier, let us define indnew as a series of “proportion
of vote in favor of independence” values for which we want to make predic-
tions: indnew <- 0:100/100. This creates a vector containing the values
0/100,1/100,2/100, . . . , and 100/100. With this, our predict statement will
be

l.pred <-predict(

model.xsd,

newdata=data.frame(p.ind=indnew),

se.fit=TRUE

)

Note: The se.fit=TRUE parameter will be important for calculating the con-
fidence bands.

Remember that these predictions are in logit units. To get them into level
units, we just apply the logistic function to these point predictions:

p.pred <- logistic(l.pred$fit)

Note: The $fit selects only the fitted predictions from the l.pred variable.
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This is necessary as we are also using the se.fit=TRUE parameter.

Now that we have the predictions in the original units, we merely
paint it on the current plot (from Step 1):

lines(indnew, p.pred)

The third step requires us to calculate the 95% confidence bands and
paint them on the plot as well. The formula to calculate the upper 95%
confidence bands is

ucb.l <- l.pred$fit+1.96*l.pred$se.fit

the lower,
lcb.l <- l.pred$fit-1.96*l.pred$se.fit

Note: These formulas should look vaguely familiar. They are the same
formulas as when we calculated the upper and lower limits for Normal
confidence intervals,

u = x+ 1.96sx and l = x − 1.96sx

The 1.96 comes from the fact that we are using a Normal distribution and a
95% confidence level. A 90% confidence level would use 1.645.

Once again, we must back-transform these two variables using the lo-
gistic function. So, our final confidence bands are

ucb <- logistic(ucb.l) and lcb <- logistic(lcb.l)

Finally, we paint this on the current plot with

lines(indnew,ucb, col=2) and lines(indnew,lcb, col=2)

Putting all this together gives us Figure 14.6. Note that the predictions are
curved in these units; they are straight in logit units. Also note the confidence
bands are wider where the data is sparse. This is due to the same reasons
confidence intervals are wider when the sample size is smaller. Lastly, note
that no horizontal line can fit between the confidence bands. This indicates
that there is a statistically significant relationship between the two variables
at the α = 0.05 level. It says the same thing as Table 14.4, but in a graphical
manner. Graphs often makes the points more manifest.
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Figure 14.6: A plot of the results of the South Sudan referendum. Included are the pre-
diction line (in black) and the 95% confidence bands (in red). Note that a horizontal line
cannot fit between the confidence bands. This indicates a statistically significant relation-
ship between the proportion of the votes invalidated and the proportion of the votes in
favor of independence. This, in turn, supports the conclusion of an unfair election.

14.5: Conclusion

In this chapter, we focused on transforming bounded variables so that they
did not violate the Normality assumptions as strongly as they did without
the transformation. To accomplish this, we noted that there are three ba-
sic types of continuous variables: unbounded, bounded on one side, and
bounded on two sides. If the dependent variable is unbounded, we do not
necessarily need to transform it (although some transforms may reduce the
non-Normality of the residuals). If the variable is bounded on one side, we
performed an algebraic transformation so that it is bounded below by zero,
then applied a log transformation. If the variable is bounded on two sides,
we performed an algebraic transformation so that it was bounded by 0 and
1, then applied a logit transformation.

In either case, we needed to ensure that we back-transformed to the
original units, first using an exponential or a logistic back-transform, then
the inverse of our algebraic transform — order matters.

While this chapter does not exactly mark the end of continuous de-
pendent variables, it does end our view of them in terms of the Classical
Linear Model (CLM). This chapter already shows why the CLM needs to be
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replaced. Here, we were able to stay within the framework, but we had to per-
form variable transformations to make it work. Once we stray from contin-
uous data, the CLM cannot work; there is no way of transforming a discrete
dependent variable into a Normally distributed random variable. As such,
we need an new paradigm — Generalized Linear Models (GLMs). The next
chapter introduces GLMs, while still using a continuous dependent variable.
This is done to show that GLMs can do anything CLMs can do. In fact, if you
had used the glm() function in this and the previous chapter, in lieu of the
lm() function, the results would be exactly the same, only the table layout
would be different.
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14.6: R Functions

In this chapter, we were introduced to several R functions that will be useful
in the future. These are listed here.

14.6.0 Packages

RFS

14.6.0 Statistics

lm(formula) This function performs linear modeling on the data, with the
supplied formula. As there is much information contained in this func-
tion, you will want to save the results in a variable, to retrieve the in-
formation through the summary() and names() functions.

predict(model) The predict function calculates the value of the dependent
variable in the model given the independent variables used to create
the model. If new predictions are required, the newdata= parameter
must be used. This parameter takes a new set of data as its argument.
Make sure that all independent variables used in the model are defined
in the newdata= parameter. If not, an error message will results. Fi-
nally, the se.fit=TRUE parameter calculates the standard error at each
prediction point.

14.6.0 Probability

pnorm(x) This function is the cumulative distribution function (CDF) for
the Normal distribution. It returns a probability that a Normally-distributed
variable will be less than or equal to x. This function has two addi-
tional parameters that remove the requirement that x has undergone
the z-transformation, m and s.

rnorm(n, m, s) This function returns n draws from a Normal distribution
centered at m and with a standard deviation s. This function is the
cornerstone of much Monte Carlo analysis.
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14.6.0 Graphics

lines(x,y) This is an extremely handy line-generating function, painting a
line on the current plot (or returns an error if no plot exists). It first
invisibly plots the pairs of points (x,y) then connects the points with
drawn line segments.

If the col parameter is not set, then the line will be black. Otherwise,
the line will be the color specified. There are three ways of stating
the color: using the Windows 1-16 values, using names, and using the
rgb values. The following all refer to ‘red’: col=2, col="red", and
col="#ff0000".

plot() This function produces a scatterplot of the two-dimensional data. The
call can be either plot(x,y) or plot(y∼x); both give identical results.
This function can produce graphs that are very customized. The R help
file for par is invaluable. Some important parameters include xlab=""
(label for the x-axis), ylab="" (label for the y-axis), xlim=c(min,max)
and ylim=c(min,max) (axis limits, min and max, for the x- and y-axis),
and las=1 (makes axis values painted horizontal).

14.6.0 Mathematics

log(x, b) This returns the logarithm of x, with a base of b. If you omit the b,
this function returns the natural logarithm of x. To calculate the com-
mon logarithm, set b=10. The logarithm function is used to transform
variables bounded on one side into variables bounded on neither side.

exp(x) This function returns the exponential of the argument, x; that is, it
returns ex. The exponential function is the inverse of the logarithm
function.

logit(x) This function returns the logit of the provided number. This num-
ber must be between 0 and 1, not including either 0 or 1. The logit
function is frequently used to transform proportions into unbounded
data. It is available through the RFS package.

logistic(x) This function returns the logistic of a given number. The range
of ths logistic function is 0 to 1, exclusive. it is the inverse of the logit
function. As such, it is often used to transform predictions from logit
units to proportion units. It is available through the RFS package.
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cloglog(x) The complementary log-log function is a second appropriate trans-
formation for proportion data. It is, however, not a symmetric function.
It is available through the RFS package.

cloglog.inv(x) This function is the inverse of the complementary log-log
function. It is available through the RFS package.

14.6.0 Programming

which(condition) This function returns a vector of indices corresponding
to the original vector’s values meeting the criteria. Thus, which(x==4)
returns the indices of all elements in vector x that equal 4. Note that
equality is checked with a double equals, ==. Other comparisons in-
clude: >, <, >=, <=, !=, &, |, and !. The last four are ‘not equal to’,
‘and’, ‘or’, and ‘not’.
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14.7: Extensions

This section offers suggestions on things you can practice from this chapter.
Save the scripts in your Chapter 14 folder. For each of the following prob-
lems, please save the associated R script in the chapter folder as ext0x.R,
where x is the problem number.

1. Predict the Mississippi 1994 SSM ballot measure vote using the trans-
formed SSM Vote model. Is the prediction physically possible?

2. Determine a 95% confidence interval, with the untransformed SSM
Vote model, for predicting Maine’s vote. Is the actual outcome within
the 95% confidence interval?

3. Determine a 95% confidence interval, with the transformed SSM Vote
model, for predicting Maine’s vote. Is the actual outcome within the
95% confidence interval?

4. Determine if the assumptions of OLS are violated in the transformed
SSM Vote model.

5. The actual vote share for Maine was 52.8%. Explain why both models
failed in predicting the actual vote outcome. How bad was the error?
What can be done to improve the predictions?

6. The logit transformation is not the only possible choice. There is also
the asymmetric complementary log-log transformation (cloglog in the
RFS package). Use this function as the transformation to predict Maine’s
vote, its 95% confidence interval, and the probability of the SSM ballot
measure passing. The inverse of the complementary log-log transform
has no name, but the R function is cloglog.inv, also in the RFS pack-
age.

7. Estimate the GDP per capita for Papua New Guinea using the untrans-
formed model, as well as the 95% confidence interval. How close is this
estimate to the real answer, and it the real answer within the predicted
confidence interval?
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