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Previous chapters have dealt with a single independent
variable that is categorical. This chapter continues test-
ing simple hypotheses concerning the expected value.
However, here, the independent variable is continuous.
We also deal with multiple independent variables.

§ § §

The voters of Maine are being sent to the polls to vote
on a constitutional referendum (ballot measure) that
proposes to limit the definition of marriage to the union
of one man and one woman. This was not the first time
that Americans were sent to the polls to vote on this
or a closely related issue. Given the information from
previous votes, what is the estimated probability that this
ballot measure will pass in Maine?
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The t-test and its analysis of variance extension from previous chapters were ANOVA
suitable when the independent variables were all categorical. The categorical
nature of those variables made it easy to group the records (trials) into groups
of identical levels and compare the means. However, such techniques are level
unsuitable for continuous independent variables. In such cases, there is no
way to separate the records (trials) into a useful number of cases from which
we can meaningfully compare means.

There are a couple solutions. The first is to discretize the variables— discretize
turn the continuous variables into categorical variables and use the meth-
ods from the previous chapters. Unfortunately, this is an inefficient use of
the data; we are discarding some rather important information. The second
method takes advantage of the continuous aspect of the data. This second
method is called regression. regression

There are two primary classes of regression: linear and non-linear.
The former models linear functions of the coefficients of the independent
variables to illuminate their relationship with the dependent variable. The relationship
latter does the same with non-linear functions of the coefficients of the inde-
pendent variables. The latter is beyond the scope of this text. This chapter
focuses on the Classical Linear Model (CLM) in which data is fit using linear
functions of parameters.

The former standard and conceptually most straight-forward method
of fitting data using the classical linear model is to use the Ordinary Least
Squares method. Before we cover modeling the relationship between two OLS
continuous variables, let us graph the variables to visualize the process.

12.1: Scatterplots

The typical way of graphing two continuous variables to see the relationship
between the two is to use a bivariate scatterplot. Just from the scatterplot, bivariate
one can see if the relationship is strong, is positive, and is linear. If the re-
lationship is not linear, then alterations to the model should happen to take
advantage of its shape. Ignoring the shape of the relationship invalidates the
usefulness of linear regression.

To illustrate this, let us create quadratic data:

set.seed(57)
x = runif(100) - 0.5
y = xˆ2 + rnorm(100, m=0, s=0.01)
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Figure 12.1: Two scatterplots. The left is of y against x; the right, y against x2. Note
that the (linear) correlation between x and y is insignificant (r = −0.03). However, the
correlation between x2 and y is extremely high (r = 0.99).

The first line sets the random number seed, allowing our results to match.
The second line creates 100 x-values ranging from -0.5 to 0.5. Line three de-
fines the response (dependent) variable, which is the square of the x-variable,
plus some noise.

Plotting the raw data, y against x, shows the strong quadratic com-y against x
ponent (Figure 12.1, left). The correlation between x and y is insignificant,
which indicates there is no detected linear relationship between the two vari-
ables: cor.test(x,y). Unfortunately, as we can see, a strong relationship� exists, one that can easily be detected from the graphic. Plot your data first.

How does one create a scatterplot in R? Before answering that ques-
tion, how does one create a scatterplot by hand? Basically, there are 4 steps:

1. Draw the x and y axes, making sure they span enough distance to allow
you to plot all data values.

2. Place the axis values along each axis.

3. Label each axis with a title.

4. Plot each point on the graphic.
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Figure 12.2: Two default scatterplots. The left is of y against x; the right, y against x2.
Note that even the default scatterplots are very informative about the apparent relation-
ship between the variables.

In R, the code to get a bare plot is just one line:

plot(x,y)

This command draws the axes, automatically calculating a correct range. It
writes the axis values and axis labels. It plots the points.

That code produces an excellent utilitarian graphic allowing you to Jeremy Bentham
visually determine if the relationship is linear or not. Using the data gen-
erated for Figure 12.1, the default scatterplot is shown in Figure 12.2. Note
that it does differ from Figure 12.1, but only in the customizations made.

12.1.1 The Three Realms While the default plot is a fully-functional
scatterplot, there are things you can do to improve its aesthetics. Those
things include the points plotted, the axis labels, and the x and y ranges.
All of these can be customized in R.

To understand the model for how R graphs, think of a canvas. You
start with a blank canvas. You then add a point to it. Then, another. Then, a
line, perhaps. You started with emptiness and annotated it piece by piece.
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In R, there are three realms to graphics code: The preamble, the plot-
ting, and the annotation. Different graphing commands belong in different
realms. The plotting section creates the canvas to your preamble specifica-
tion and draws the plot. If you would like to add a line to the canvas, you
draw it. If you would also like to add additional points, you draw them.
These are added to the canvas, in order.

I used the following code to create the left graphic of Figure 12.1. The
three realms are marked.

## Realm 1: Preamble
par(cex=0.8, cex.lab=0.8,cex.axis=0.7)
par(family="serif", las=1)
par(mar=c(3,2,0,0)+0.2)

## Realm 2: Plotting
plot(x,y, pch=20, xlim=c(-0.52,0.52), ylim=c(-0.05,0.3),
xlab="",ylab="")

## Realm 3: Annotating
title(xlab="x",line=2)
points(x,y,col="steelblue", pch=20,cex=0.6)

The Preamble: The first realm of the graphic code is the preamble section.
In this section, you specify aspects of the entire graphic. This includes scal-
ing factors, backgrounds, and colors. Every line in this realm uses the versa-
tile par command. If you read the help file on that command, you will see
everything that can be set.

In the graphics for this book, I typically set four things: the scale, the
font, the label orientation, and the margins. Let us examine each in turn.
First, I set the scale using the first par command in the listing above. There
are many aspects of the graphic you can scale. The parameter cex sets the
base scale for the entire graphic; cex.lab, for the axis labels; cex.axis, the
axis values. Values above 1 make the areas larger; below 1, smaller.

Second, I set the font family to serif; sans-serif is default. Options
for the family parameter also include “sans” and “mono” with advanced
options for Hershey fonts and for symbol fonts. The parameter las=1 makes
all axis values horizontal.

Finally, I set the margin using the mar parameter. The margin takes
four values, which are the margins (in lines) for the bottom, left, top, and
right sides (note that this is clockwise, starting at the x-axis). Since this pa-
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rameter requires four values, they need to be collected using the c() func-
tion. Thus, the margins for this graphic will be 3.2 lines on the bottom, 2.2
lines on the left side, 0.2 lines on the top, and 0.2 lines on the right.

The Plotting: After you have set the global aspects of the graphic, you are
ready to plot the base graphic. This realm contains a single command that
starts a new plot. The two commands commonly found here are plot for a
scatterplot and boxplot for a box-and-whiskers plot. These two create a new boxplot
plot.

Note that the commands in the preamble plotted nothing. They just
told R what things should look like in the future. This section actually starts
a new plot according to the rules created in the preamble.

In this example, I created a scatterplot using the plot command. With
that command, there are several options I can use to customize the plot.
Some of these, like pch, can also be set in the preamble to apply to all plots.
Others, like xlab, must be placed here. Notice that I set both the x-axis label
and the y-axis label to empty. I did this to allow me greater control of their
placing, later.

The Annotations: The final realm is the annotation section. Now that you
have a graphic plotted, you can add to it (annotate it).

In this section, you can set axis labels using the title command. You
can add points to the original plot using the points command. You can add
lines to the original plot using either lines or abline. You can add things
to the axis values using either axis or mtext. You can add text to the main
plot using text. You can do almost anything you should want.

A strength with using a scripting language to create your graphics is
that you can create them using trial and error. If you made the margins too
wide, change them and re-run the entire block of code again. If you want to
change the color of the points, change the color and re-run the entire block
of code. If you want to add the sample mean to the plot, but are not sure
where, add it somewhere, then reposition it until it is in the right place.

Were you to use a menu-driven system, you would have to start from
scratch each time you wanted to change something. Repeating the menu
options and clicking the mouse takes a lot of time.

You can also be extremely precise with placement and even place
things on the plot that are calculated. For instance, if I wanted to draw a
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Figure 12.3: An annotated scatterplot of y against x. Note that the sample means are
added to this plot.

vertical line at the sample mean of the x-values and a horizontal line at the
sample mean of the y-values, I would add the following two lines:

abline(v=mean(x), col="grey50", lty=3)
abline(h=mean(y), col="grey50", lty=3)

The first draws a vertical line at x. The second draws a horizontal line at y.
Both are grey and dotted (lty=3). I never calculated the means before these
lines, nor do I care what they are. I just created the lines.

With a little more work, I could have written the values of the two
means (see Figure 12.3). Since I am placing the text in the plotting region,
the command is text(). It takes at least three things: the x- and y-value
of where to place the text, and the text itself. The following lines place the
sample means on the graphic. The optional pos parameter adjusts the text
relative to the point stated. The positions correspond to the axis numbering.
Thus, pos=4 means the text is written to the right (towards the fourth axis)
of the stated point; pos=3 is above.

text(mean(x),max(y), round(mean(x),4), pos=4 )
text(min(x),mean(y), round(mean(y),4), pos=3 )

290



The following lines take it to the next level by including x and y, as symbols,
to the plot. This makes the graphic even more understandable by the average
reader. While some of this is beyond the scope of this book, I encourage you
to tinker with the lines to see what each part does.

text(mean(x),max(y), pos=4, substitute( paste( bar(x)," = "
,mn), list(mn=round(mean(x),4))))

text(min(x),mean(y), pos=1, substitute( paste( bar(y)," = "
,mn), list(mn=round(mean(y),4))))

If this looks interesting to you, I encourage you to read two books: The R Book
(Crawley 2007) and RGraphics (Murrell 2011). The first deals with more than
just graphics, while the second focuses on them. Both are good resources for
creating graphics in R.

After adding these annotations, you will have a graphic much like that
in Figure 12.3. Notice that it is now clear what the numbers mean; they are
the sample means for each variable. The crossing point of the two dotted
lines is the center of mass for the data. One thing that you should also add
to the graphic is the measured correlation between the variables. I leave that
as an exercise for you.

12.1.2 Graphics Conclusion With a little bit of practice and a little bit of
patience, one can make graphics in R look perfect. This section just provided
an introduction to what R graphics can do. Figure 12.4 shows more of what
one can do using R for graphics.

Beyond the two books mentioned in this section, there is also “Data
Analysis and Graphics Using R: An Example-Based Approach,” by Main-
donald and Braun. This book has the advantage of weaving together analysis
and graphics, as they should. Remember that graphics teach the researcher
about the data. They also allow the researcher to tell the story of the data. Story

In addition to print sources, there are many online sources for inspira-
tion. Since websites tend to blink out of existence quickly, it would be a waste
of space to list them. However, a web search for “graphics in R” should re-
turn several sites. Of course, a more precise search on “how do I make a
scatterplot in R” may return better results.

Finally, I would like to leave you with Figure 12.4. This graphic illus-
trates several things. First, it shows the relationship between the number of
Nobel Prizes won, adjusted for population, and the chocolate consumption
in the country. Second, it uses the country’s flag instead of a dot. This pro-
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Figure 12.4: Scatterplot of Nobel Prize rate against chocolate consumption, per capita.
Note that the graphic also provides the identity of the State for each point. The State is
identified by its flag.

vides much more information about the relationship. It also suggests that
there may by some bias in the results. How does it suggest this? Which coun-
tries are represented in the graphic? Do they tend to come from one region
more than another? Why were these countries selected? Similarly: Why were
other countries left out?

Third, the graphic contains the regression line (next section), which is
the best estimate for the relationship between the two variables. Note that
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Figure 12.5: Height and weights of five randomly-selected males.

the relationship is positive: as chocolate consumption increases, the Nobel
Prize rate also tends to increase. This is interesting, no?

12.2: The Method of Ordinary Least Squares

As with earlier statistical tests, the idea for the statistical test arose from a
graphic of the data. Here, that graphic is the scatterplot of the last section.
In a scatterplot, the marks (usually dots) represent the unit of analysis. The experimental unit
position of the dot on the graphic is due to the values of the two variables
measured on the unit.

For instance, let us assume we would like to determine if height and
weight are independent of each other for adult males. To test this, I ran-
domly select five adult males from the sampled population. For each, I mea- random sample
sure the height (in centimeters) and the weight (in kilograms). Thus, we have
repeated measures on the units and we would like to determine the relation-
ship between the two measurements.

While the data is given below, it is better to first graph the data. This
allows you to see if the relationship is linear. It also allows you to formulate
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Figure 12.6: Heights and weights of five randomly-selected males, with the line of best
fit summarizing the data. The length of the vertical segment marked ε3 is the estimation
error of the third point.

expectations on the relationship: Is it a strong relationship? Is it positive?
Figure 12.5 is a scatterplot of the data.

Person Height Weight

1 172 79
2 172 86
3 177 82
4 182 93
5 190 107

The scatter plot of the data tells the story of the data: as the height
increases, the weight also increases, although there are exceptions to this
rule. To put numbers on that relationship, we will fit a line to the data. The
purpose of this line is to best summarize the bivariate data. How do we do
this?

The line of best fit is the line that comes closest to the data as a whole.
In Figure 12.6, the estimation error of the third point is marked ε3. Thus,global
a line of best fit will minimize some function of those estimation errors. By
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definition, the OLS line of best fit is the line that minimizes the sum of the
square of the estimation errors.1 Calculating the slope and y-intercept of the
OLS line of best fit is straight-forward and follows from the definition of that
line:

εi = β0 + xiβ1 − yi (12.1)

t =
n∑
i=1

ε2
i (12.2)

All we have to do is substitute the five equations of Eqn 12.1 into
Eqn 12.2, differentiate the resulting equation with respect to each of the two
parameters (β0,β1), set the two equations equal to zero, and solve for the two
parameters—the usual method for calculating minimums. To wit:

t =
n∑
i=1

(β0 + xiβ1 − yi)2

Differentiating with respect to β0 gives

∂
∂β0

t =
n∑
i=1

2(β0 + xiβ1 − yi)

= 2nβ0 + 2nxβ1 − 2ny

Differentiating the first equation with respect to β1 gives

∂
∂β1

t =
n∑
i=1

2xi (β0 + xiβ1 − yi)

= 2nxβ0 + 2nβ1

n∑
i=1

x2
i − 2

n∑
i=1

xiyi

Now, we continue as usual, setting the two equations equal to zero and solv-
ing the system of equations for the two parameter estimates. Doing so for the
first equation gives

0 = 2nβ̂0 + 2nxβ̂1 − 2ny

β̂0 = y − β̂1x

1Other estimation methods may use different definitions of the line of best fit. For instance,
the least absolute deviations (LAD) line of best fit minimizes the sum of the absolute values
of the estimation errors.
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The second gives

0 = 2nxβ0 + 2nβ1

n∑
i=1

x2
i − 2

n∑
i=1

xiyi

Substitution and algebra give

0 = 2nx
(
y − β̂1x

)
+ 2nβ̂1

n∑
i=1

x2
i − 2

n∑
i=1

xiyi

0 = nxy −nx2β̂1 + 2nβ̂1

n∑
i=1

x2
i − 2

n∑
i=1

xiyi

β̂1 =
∑n
i=1 xiyi −nxy∑n
i=1 x

2
i −nx

2

Using the definitions of variance and covariance, we have

β̂1 =
Cov(x,y)
V ar(x)

This last formula can be written as β̂1 = rxy
( sy
sx

)
, where sx and sy are the stan-

dard deviations of x and y, respectively, and rxy is the observed correlation
between x and y.

Thus, for this example, we have

x = 178.6

y = 89.4
5∑
i=1

xiyi = 80,150

5∑
i=1

x2
i = 159,721

This leads to

β̂1 = 1.3659

β̂0 = −154.5528
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Figure 12.7: Height and weights of five randomly-selected people, with the line of best fit
summarizing the data. The effect estimate is the slope of the line of best fit, as shown in
the figure.

Finally, the OLS line of best fit is

weight = −154.5528 + 1.3659 height

This line is plotted in Figure 12.6 and in Figure 12.7.

Now, among other things, this tells us that the expected weight of an
182cm tall adult male is E [Y | x = 182] = −154.5528 + 1.3659(182) = 94.04
cm. We see that the actual value of y at x = 182 is 93, therefore the error
is e4 = 93 − 94.04 = −1.04 cm. While this particular error is rather small,
especially when compared to the data values, this line is optimal; that is, it
globally minimizes the (sum of squares of) errors.

The slope of this line is called the effect size, as it provides the effect effect size
on the dependent variable of increasing the value of this independent vari-
able by one unit, with the values of all other variables held constant. As this ceteris paribus
regression line is a line, the slope is constant. Thus, the values of the other
independent variables do not affect the effect of this independent variable.

The effect size is also the marginal effect of the independent variable
on the dependent variable. Figure 12.7 illustrates the effect of an increase of
5cm on the expected weight. The expected increase is 6.83 kg. While this
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effect is illustrated for an increase from 185 to 190cm, the effect is constant.
Thus, the same weight increase would have happened had we examined a
change from 170 to 175cm. Lines have constant slopes; linear models esti-
mate constant effects.CLM

This constant effect is neither a strength nor a weakness. It is some-
thing of which we must be mindful. Does the constant-effect model really
represent the data-generating process? If so, it can be used. If not, it should
not. The classical linear model describes some reality, not all reality.

12.2.1 Matrix representation* Extending Equations 12.1 and 12.2 to
handle multiple independent variables introduces an unnecessary level of
complexity if we insist on using the algebraic notation above. We can write
the entire system in matrix form (Younger 1979). In matrix form, we need to
solve Equation 12.3 for B.

Y = XB + E (12.3)

In the equation, Y is the vector of response values (values of the depen-
dent variable), X is the design matrix (the values of the independent variablesdesign matrix
with the first column all 1s, corresponding to including the constant term in
the regression equation), E is the vector of random errors (more on that later),
and B is the vector of parameter values.

For our simple example, we have the following:
93
82

107
79
86

 =


1 182
1 177
1 190
1 172
1 172


(
β̂0
β̂1

)
+


e1
e2
e3
e4
e5


To solve the matrix equation, we make certain assumptions about E

to eliminate it from consideration (more on that later) and use some matrix
algebra to get Equation 12.4, where X′ indicates the transpose of the matrix
and X−1 indicates the inverse of the matrix.

B = (X′X)−1 X′Y (12.4)
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Solving the matrix equations 12.3 and 12.4 gives us the coefficients (B) and
the residuals (E).

B =
(
−154.552768

1.365917

)
E =


−1.044118
−5.214533

2.028547
−1.384948

5.615052


The advantage to this form is that it looks the same no matter how

many independent variables we include; the formulas in Equation 12.1, how-
ever, become unwieldy quickly. Not that any of this is important to you and
your calculations. That the computer uses the matrix form is between the
computer and its operating system.

Note: The important things for your understanding are the following:

1. We made two assumptions about the X matrix: There is some variation
in the independent variables; and the independent variables are not
linear combinations of each other.

2. We made one assumption about the E vector: The errors have a zero
mean.

3. We made one assumption regarding the relationship between the de-
pendent and independent variables: it is linear.

Under these assumptions, we can calculate an expected value for the depen-
dent variable given values for the independent variables. This is called pre-
diction.

12.2.2 Toward a Test At this point, we have only created the line of best
fit, which summarizes the data. Creating that line allows us to create esti-
mates. It does not, however, allow us to determine if the line is good at sum- prediction line
marizing the data. To do this, we need to have test statistics and distributions
for those test statistics. Luckily, if we assume the residuals are Normally dis- test statistics
tributed, then we can use everything we know about the Normal distribution
to create tests and test statistics.
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And so, the rest of this section briefly covers the assumptions of ordi-
nary least squares regression. This will allow us to determine how well the
model fits the data and whether the effects are significantly different from
zero.

First, let us make the assumption that we know the values of the inde-
pendent variable without error. Second, let us make the assumption that the
errors are independent and identically-distributed Normal with mean zero:

εi
iid∼ N

(
0,σ2

)
(12.5)

With these assumptions, we have the distribution of the effect (slope) esti-
mates:

β̂1
iid∼ N

(
β1,σ

2
β̂1

)
.

However, as was true with the z-test (§5.2), we do not know the population
variance. As such, we need to estimate it from the data:

s2
β̂1

=
1
n−2

∑n
i=1 e

2
i∑n

i=1(xi − x)2 .

This estimation introduces uncertainty. As before, this means our test statis-

tic will have a t-distribution. Here, that test statistic is β̂1−β1
sβ̂1

, and its distri-

bution is a t-distribution with n− 2 degrees of freedom.

Similarly, we have the distribution of the y-intercept as

β̂0
iid∼ N

(
β0,σ

2
β̂0

)
.

Again, we do not know the population variance. We estimate it using

s2
β̂0

=
1
n
s2
β̂1

n∑
i=1

x2
i .

This test statistic, β̂0−β0
sβ̂0

has a t-distribution with n− 2 degrees of freedom.

Note: In general, the number of degrees of freedom in linear regression is
n minus the number of parameters being estimated in the model, which
is the number of independent variables plus one (for the intercept).

Statistical packages do not require you to perform these calculations. In R,
you will fit the model using either the lm or the glm command, saving the
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results into a variable. Displaying the results in the usual regression table
format requires a summary command.

The regression table provides estimates for the intercept and for the
effect of the independent variable(s). It also provides the standard errors, s∗,
the test statistics, t∗, and the p-value of the null hypotheses β0 = 0 and for
β1 = 0.

The regression table for the above example is Regression Table

Estimate Std. Error t value Pr(>|t|)
(Intercept) -154.5528 55.0678 -2.807 0.0675 .
x 1.3659 0.3081 4.433 0.0213 *

Note that, at the usual level of significance, the intercept is not significantly
different from zero. However, there is significant evidence that height can be
used to predict weight; each additional 1cm increase in height tends to result p-value
in a 1.3659kg increase in weight, on average.

One can get confidence intervals using the confint command on the
model. As usual, the confidence level can be adjusted using the level pa-
rameter in the confint command. Thus, to obtain 90% confidence intervals, confidence interval
type confint(model, level=0.90). With this example, this results in

5 % 95 %
(Intercept) -284.147300 -24.958237
x 0.640829 2.091005

Thus, we are 90% confident that the effect of height on weight is between
0.64 and 2.09 kg per cm. We are 5% certain that the actual effect of height
on weight is greater than 2.09 kg/cm. We are also 5% certain that the actual
effect of height on weight is less than 0.64 kg/cm, which includes negative
effects (increased height corresponds to reduced weight).

12.3: Goodness of Fit

Thus far, we have calculated the line of best fit for the data and determined
if the relationship(s) between the dependent variable and the independent
variable(s) is statistically significant. We have not addressed the question of
how well the model fits the data. There are two common methods of mea- model fits the data
suring the goodness of fit of the OLS model to the data. Both are measures
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of error (variation) reduction.2 Their difference lies in how that variation is
calculated.

12.3.1 R-squared Measure The first way of defining the variation leads
to the famous (or infamous) R2 value. Let us define variation as the av-
erage squared distance from the data value to the predicted value; that is,
v = 1

n

∑
(yi − ŷi)2.

Without the model, ŷi = y. Thus, the variation without the model is
1
n

∑
(yi − y)2, which is close to MST. Recalling the notation of Section 7.2, this

original variation is 1
nSST .original variation

With the model, the variation is 1
n

∑
(yi − ŷi)2, which is similar to MSE.

Again, using the notation of Section 7.2, this remaining variation is 1
nSSE.

Thus, the model will have reduced the variation byremaining variation

R2 := 1−
1
nSSE
1
nSST

= 1− SSE
SST

(12.6)

Performing the calculation (or allowing R to do so), the R2 for our model is
R2 = 1− 65.8

65.8+497.2 = 0.8676. Thus, this model explains 86.76% of the original
variation in weights.

The SSE and SST numbers are from the results of the summary.aov

function:

Df Sum Sq Mean Sq F value Pr(>F)
height 1 431.4 431.4 19.65 0.0213 *
Residuals 3 65.8 21.9

The R2 value ranges between 0 and 1. When R2 = 1, the model perfectly0 to 1
predicts the dependent variable based on the independent variable(s). When
R2 = 0, the model is no better than using y in predicting y for any value of x.

Note: One drawback to the R2 value is that one can increase it simply by
adding additional independent variables. This is a drawback because it
encourages complex models—science prefers simpler models.Occam’s Razor

2The appropriate acronym is PRE, which stands for “Proportional Reduction in Error.” PRE
measures are measures of how much the model reduces the prediction error of the dependent
variable.
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12.3.2 Adjusted R-squared Measure The strength of the R2 measure is
that it is a ‘Proportional Reduction in Error’ (PRE) measure; that is, we can
conclude that this model reduces the unexplained error by 86.76%. This is
its strength (and its limit). There is another PRE measure that is commonly
used (although not entirely understood by its users).

The ‘adjusted R-squared’ (Equation 12.7) is a PRE measure for errors
measured in terms of variance (Younger 1979). With that said, most people
use it to determine whether a specified variable should be kept in the linear
model, since it has the effect of adjusting for both the number of independent
variables you are using (k) as well as the number of data points in the sample
(n).

With the R2 measure, we defined variation as v = 1
n

∑
(yi− ŷi)2. I had to

call it variation, because it is not the variance, strictly speaking. The adjusted
R2 measure defines the variation as the variance. In other words, if we define
MSE as the variance in the residuals andMST as the variance in the original
data (see Section 7.2), the adjusted R2 is defined as

R
2

:= 1− MSE
MST

To show its relationship to the R2 measure, substitution gives

1−R2
=
SSE/(n− k − 1)
SST /(n− 1)

=
( n− 1
n− k − 1

) SSE
SST

And, we finally have

1−R2
=

( n− 1
n− k − 1

)
(1−R2) (12.7)

In the literature, this measure tends to only be used to determine if the
addition or removal of an independent variable is supported.3 Fortunately,
it is quite valid as a PRE measure in its own right.

According to the model summary, R
2

= 0.8234. We could have calcu-
lated this from Formula 12.7 and the fact that n = 5 and k = 1. Thus, using a

3To determine if the variable(s) should be included in the model, compare the adjusted R-
squared values. Use the model with a higher adjusted R-squared.
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different definition of variation, we can conclude that this model reduces the
prediction error by 82.34%.

Note: There is one major drawback to the R
2

measure. Where the R2

value was bounded between 0 and 1, the R
2

value is not. While it is still
bounded above by 1, it can take on negative values. This may happen
when R2 is small, because n−1

n−k−1 is always greater than 1.

12.4: Maine and the Ballot Measure

To illustrate the process of model selection, let us revisit the framing question
for this chapter, that of Maine’s ballot measure:

Example 12.1: The voters of Maine are being sent to the polls to vote on a
constitutional referendum (ballot measure) that proposes to limit the defini-
tion of marriage to the union of one man and one woman. This was not the
first time that Americans were sent to the polls to vote on this or a closely re-
lated issue. Given the information from previous votes, what is the estimated
probability that this ballot measure will pass in Maine?

Before attempting any analysis, there needs to be a search of the literature
to inform us as to which variables should be present, and which directions
those variables should affect the dependent variable. From that literature
review, we hypothesize that the vote in favor of such ballot measures depends
on three variables: age of the population, religiosity of the population, and
whether the ballot measure also restricts civil unions. The effect direction
for each is that States that are more religious should vote against single-sex
marriage at a higher rate; Measures that also ban civil unions should have
a harder time passing; Measures passed later should have a more difficult
chance of passing, as the young tend to support single-sex marriage, and the
elderly tend to oppose it.Directional Hypotheses

With this theory and the resulting hypotheses, we can take our next
step: Getting to know the data.
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Year Passed (post-2000) Civil Ban Religious Percent

Minimum -2 0 51.00
Maximum 8 1 85.00
Median 4 1 67.50
Mean 4 0.5938 66.75
Variance 6.0650 0.2490 88.1935
Coefficient of Variation 0.5794 0.8404 0.1407

Table 12.1: Descriptive statistics on the variables in the ssm dataset.

12.4.1 Get to Know the Data Before we begin trying to answer this
question, we must get to know our data. There are several functions available
to us to visualize the data: histogram, scatterplots, and quantile-quantile
plots. In addition to visualizing the data, we should calculate several of the
descriptive statistics for the variables of interest.

Variability: Since we have multiple independent variables, we should cal-
culate both univariate and bivariate descriptive statistics. Table 12.1 pro-
vides the univariate descriptive statistics. The primary question to ask about
the independent variables here is whether there is sufficient variation. The Variation
two measures we need to examine are the variance and the coefficient of vari-
ation. If both of these numbers are small, then there may be an issue.

In this data, the variance of the Civil Ban variable is quite small and
potentially worrisome; however, its coefficient of variation (a scaled standard coefficient of variation
deviation, cv =

∣∣∣ sx ∣∣∣) indicates that there is no issue (the value is close to 1).4

None of the three variables have small enough variation to cause us concern.

Relationships: After getting to know the variables individually, it is impor-
tant to get to know the relationships between the variables. This can be done
through correlation tests and bivariate scatter plots. Independent variables
with strong correlations with the dependent variable should be considered
for inclusion in the model. Independent variables with strong correlations
with other independent variables should be of concern. Remember that one
of the assumptions of OLS regression is that the independent variables are
independent of each other. If independent variables are highly correlated,
the statistical properties of the method weaken. correlated

4As this is a dichotomous variable, the mean is the percent of the values equal to 1. Thus, there
are about 60% of the values 1 and 40% of the values 0—more than sufficient variation.
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Year Passed Civil Ban Religious Percent

Year Passed 1.0000 0.1903 0.2399
Civil Ban Included 0.1903 1.0000 0.5146
Religious Percent 0.2399 0.5146 1.0000

Table 12.2: The correlations between the variables in the ssm data. The correlation be-
tween Civil Ban and Percent Religious is statistically significant (t = 3.2869;ν = 30;p =
0.0026). This is the sole statistically significant correlation.

The six pairwise correlations are provided in Table 12.2. Of the three
independent variables, only Civil Ban and Religious Percent have a statisti-
cally significant correlation (t = 3.2869;ν = 30;p = 0.0026). Should the level
of correlation be a concern? Perhaps. While their correlation is r = 0.5146,
this corresponds to an R2 value of just 0.2648. As such, the correlation may
not be large enough to severely affect our coefficient estimates (see §13.1).
Let us just remember this relationship for the future.

Note: The issue is actually more than just a statistics issue. If two inde-
pendent variables are highly correlated with each other, it is logically im-
possible to determine which affects the dependent variable or how much
of the effect to partition to each independent variable. Statistics is, how-
ever, able to tease out the independent relationships better than not. As
a rule of thumb, if the correlation is greater than r = 0.90, there may be a
serious logical issue.

12.4.2 Model the Data The example asked us to determine the proba-
bility that the ballot measure will pass in Maine. Before we can answer that
question, we need to model the proportion of the vote in favor of the bal-
lot measure using our independent variables; that is, we need to be able to
predict the proportion of the vote in favor of the ballot measure with theprediction
information we have.

Thus, the dependent variable will be propWin and the independent
variables will be yearPassed, civilBan, and religPct. For now, let us
assume a linear relationship between the independent variables and the de-
pendent variable.
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Figure 12.8: Pairwise plots between the three independent variables. The correlation
between civilBan and religPct was statistically significant according to the Pearson
product-moment correlation test. This is evident in this graph, as well.

Model Selection: Unless you have a lot of independent variables, I recom-
mend you start with the interaction model. The interaction model includes interaction model
the effects of each independent variable singly (main effects) as well as all
possible combinations of those variables (interaction effects).

R uses the usual formula grammar (Table 12.3). Its use takes practice. grammar
For instance, if you wish to fit the model y = β0+β1x+ε, you would use y ∼ x.
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∼ Separates the dependent variable (left-hand side) and the
independent variables (right-hand side)

+ Indicates the following variable is added to the formula
− Indicates the following variable is removed from the for-

mula
: Indicates the following and the preceding variable are mul-

tiplied in the formula
∗ Indicates the following and the preceding variable are

crossed in the formula
∧ Includes the specified level of interactions.
I() Replaces the formula grammar of what is in the parenthe-

ses with algebraic grammar.

Table 12.3: The symbols and their meanings in the grammar of formulas.

If you wish to fit the model y = β1x+ε, you would use either y ∼ x - 1 (my
usual) or y ∼ x + 0.

Some other examples include:

Algebraic form Formula form
y = β0 + β1x1 + β2x2 + β3x1x2 y ∼ x1*x2

y = β0 + β1x1 + β2x2 + β3x1x2 y ∼ (x1 + x2)∧2
y = β0 + β1x1x2 y ∼ x1:x2

y = β0 + β1x13 + sin(x2) y ∼ I(x1∧3) + I(sin(x2))

y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2+ y ∼ x1*x2*x3

β5x1x3 + β6x2x3 + β7x1x2x3

With this brief introduction to the grammar of formulas, we can return to
our example. We have three independent variables; the formula to give a full
interaction model isasterisk

propWin ~ yearPassed * civilBan * religPct

As we will use this model a bit, we save the linear regression results into a
variable. Thus, the two lines to run are

mod1 = lm(propWin ~ yearPassed * civilBan * religPct)
summary.aov(mod1)

These lines give output.
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The following is the first, fourth, and fifth column of that output:

t value Pr(>|t|)
(Intercept) 1.148 0.262
yearPassed -0.901 0.377
civilBan -1.084 0.289
religPct 1.557 0.133
yearPassed:civilBan 0.950 0.352
yearPassed:religPct 0.510 0.615
civilBan:religPct 0.979 0.338
yearPassed:civilBan:religPct -0.895 0.379

The line starting yearPassed:civilBan:religPct is the three-way in-
teraction term. As it is the highest interaction, it is the only one we look at three-way interaction

termhere. Note that it is not statistically significant (p = 0.379). Thus, removing
that term will do two things. First, it will simplify the model. Second, it will
not harm the model’s predictive ability.

That second model can be written as either

mod2 = lm(propWin ~ yearPassed * civilBan * religPct -
yearPassed:civilBan:religPct)

or as

mod2 = lm(propWin ~ (yearPassed + civilBan + religPct)ˆ2)

The two formulas are equivalent. formula grammar

Note that the summary.aov(mod2) command indicates that none of
the three two-way interactions are statistically significant. Thus, these two- two-way interaction

termsway interactions should be removed from the model. This leaves a model
with no interactions—an additive model. Fitting the additive model and additive model
checking the statistical significance of the variables is as above

mod3 = lm(propWin ~ yearPassed + civilBan + religPct)
summary.aov(mod3)

Note that all three variables are significant according to this output. Thus,
this is our provisional model. provisional model
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Estimate Std. Error t-value p-value

Constant Term 0.1512 0.0659 2.293 0.0295
Year Passed (post 2000) -0.0201 0.0036 -5.618 � 0.0001
Banned Civil Unions -0.0373 0.0200 -1.868 0.0723
Percent Religious 0.0095 0.0011 8.801 � 0.0001

Table 12.4: Results table for the regression of proportion support of a generic ballot out-
lawing same-sex marriage against the three included variables. The R2 for the model
is 0.7801; the R

2
, 0.7565. The p-values calculated are based on two-tailed test. The

hypotheses were one-tailed hypotheses. As such, all three explanatory variables are statis-
tically significant at the standard level of significance (α = 0.05).

The Additive Model: That is, the equation we will use to fit the data is

propWin = β0 + β1(yearPassed) + β2(civilBan) + β3(religPct) + ε

If ε ∼ N (0,σ2), then we know

E [propWin] = β0 + β1(yearPassed) + β2(civilBan) + β3(religPct)

The regression table for model mod3, produced using summary(mod3),
is given in Table 12.4. Notice that all three variables of interest are statisti-

cally significant at the α = 0.05 level.5 Additionally, the model has an R
2

ofdirectional hypothesis
0.7565, which is a great fit in most of the social sciences. The direction of the
coefficients also agrees with theory.research hypotheses

Thus, the equation for the line of best fit is approximately
prediction line

E [propWin] = 0.1512

− 0.0201(yearPassed)

− 0.0373(civilBan)

+ 0.0095(religPct)

Predicting Maine: According to this model, what is the expected vote in
Maine? To answer this, we need information about the Maine ballot mea-
sure, specifically the value of the independent variables: yearPassed = 9,

5You may claim that the Civil Unions variable is not statistically significant at the α = 0.05
level. However, these p-values are two-tailed p-values. Our hypotheses were all directional
hypotheses (one-tailed). Thus, to get the one-tailed p-values just halve the two-tailed p-
values. With that, all three independent variables are statistically significant.
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civilBan = 0, religPct = 48. With this information, and under the as-
sumption that the model is correct, we have our prediction that 42% of the
Maine voters will vote in favor of this ballot measure.

Thankfully, R does not require us to do this calculation by hand. The
R code for predicting the percent of Maine voters voting in favor of this ballot
measure can be

MAINE = data.frame(yearPassed=9, civilBan=0, religPct=48)
predict(mod3, newdata=MAINE)

The first line was used to make the code more readable. It is also helpful
to first define the variable MAINE if you are going to make predictions for
Maine using several models.

If neither of these appeal to you and you wish to do this in one line,
that line would be

predict(mod3, newdata=data.frame(yearPassed=9, civilBan=0,
religPct=48))

Note the inclusion of the predict() function, which predicts the dependent predict
variable value given values for each of the independent variables (read the
help file on predict; we will use this function frequently).

12.4.3 Checking the Assumptions Before we can conclude that our pre-
diction is good, we need to determine if our model violates any of the as-
sumptions. However, let us skip this until next chapter. Let us pretend that assumptions
this model passes the assumption tests. In reality, it does not, but Chapter 14
gives us the tools to fix the issues.

12.4.4 Graphing the Results Now that we have confidence in our model,
we can use it to predict the effects of each of the three independent variables
on the vote in favor of these ballot measures. There are three independent
variables, so we cannot create a single graph that displays the results. How-
ever, as one of the variables is dichotomous, we can show the results in just
two graphs (the number of continuous independent variables).

Both of these graphs will have the vote in favor as the dependent vari-
able (vertical axis). One of the two graphs will have percent religious as the
primary independent variable, whereas the other will have the year passed
as the primary independent variable. The civil ban variable will be present
in both graphs, signified by two separate curves (Figure 12.9).
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Figure 12.9: Prediction graphs of our ssm model. These graphs contain two indepen-
dent variables plotted against the dependent variable. Note that the effect of each of the
independent variables is made manifest by these two graphs.

The graphs illustrate the results of the model—this is their purpose.
Although the graphs “illustrate the story,” we must still “tell the story” of
the graphics, including numbers from the prediction table (Table 12.4). The
following paragraphs explain the graphics.

Both graphics show that the effect of adding a civil union bantell the story
to the referendum tends to reduce the vote in favor of the refer-
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endum. All things being equal, a ballot measure banning civil
unions will have 3.7% fewer people vote for it than a like measure
not banning civil unions (s = 1.9988, t = −1.87,p = 0.0723).

The top graphic illustrates the effect of passing time on the
proportion of the vote in favor of these referenda: As the year
increases by one, the proportion voting in favor of the referendum
decreases by 2% on average (s = 0.3577, t = −5.62,p� 0.0001).

The bottom graphic shows the effect of religiosity on the ballot
outcome: those states with higher levels of religiosity tend to vote
in favor of these measures at a higher level than states with lower
levels of religiosity. In fact, increasing the level of religiosity in
the state by 1% will tend to increase the vote in favor of the ballot
measure by 0.95% (s = 0.1074, t = 8.80,p� 0.0001).

Note the interweaving of the graphic discussion with concrete, numerical
effects (and statistical significance in parentheses) from the prediction table.
This combination aids the reader in interpreting the graphic(s) in terms of regression table
statistical language.

12.4.5 Answering the Question* Thus, we have a prediction of 42% of
the voters will support the ballot measure. However, this is not the answer to point prediction
the original question, which asked about the probability of the ballot measure
passing. From a modeling standpoint, this probability depends on the coef-
ficient estimates, which are just estimates of the true population value, and
the standard errors, which are measures of our certainty in those estimates.

In the Ordinary Least Squares method, those parameter estimates are
random variables, since they are functions of the data. In other words, if we random variable
re-ran human history, the estimated effect would be different, since reality
would be different. Furthermore, as these are random variables, they have an
associated distribution—the Normal distribution. In fact, the distribution of
each parameter estimate is Normal, with expected value equal to the estimate
and standard deviation equal to the standard error. Thus, for example, the distribution

of estimatorseffect of yearPassed is β̂1 ∼ N (µ = −0.0201,σ = 0.0036); of civilBan,
β̂2 ∼ N (µ = −0.0373,σ = 0.0200); and of pctRelig, β̂3 ∼ N (µ = 0.0095,σ =
0.0011).

Let us leverage these facts to (virtually) re-run human history several
times, get the parameter estimates for each history, and predict the outcome
of the ballot measure in Maine. In other words, let us perform a Monte Carlo
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analysis. The steps are the same as with any Monte Carlo analysis we haveMonte Carlo
done (Kennedy 2008, and §1.4). The only difference is what we do within the
loop. Here, we draw random numbers from the appropriate distribution and
calculate the predicted vote.

Before you look at the following algorithm, write your own and com-
pare it to the one below:

1. Initialize variables

2. Perform loop
a) Draw from the four distributions
b) Predict the Maine outcome

3. Calculate the number of times the ballot measure garnered more than
50% of the vote

One can also store the random numbers inside the loop and predict outside
the loop. Also, if the statistical program allows it, you can avoid the loop and
just draw all the numbers at once. This last has the advantage of being very
fast.

It is also the method I use here, in the R script:

# Initialize variables
outcome <- numeric()
trials <- 1000000

# Coefficient estimates
b.intc <- 0.151221
b.year <- -0.020095
b.cban <- -0.037331
b.rpct <- 0.009452

# Coefficient standard errors
s.intc <- 0.065938
s.year <- 0.003577
s.cban <- 0.019988
s.rpct <- 0.001074

# Distributions (the "loop")
e.intc <- rnorm(trials, m=b.intc, s=s.intc)
e.year <- rnorm(trials, m=b.year, s=s.year)
e.cban <- rnorm(trials, m=b.cban, s=s.cban)
e.rpct <- rnorm(trials, m=b.rpct, s=s.rpct)
outcome <- e.intc + e.year*9 + e.cban*0 + e.rpct*48
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Figure 12.10: Plot of the predicted vote outcomes from the Monte Carlo experiment de-
scribed in the text. Note that, while the expected proportion of the vote in favor of the
ballot measure is 42%, there is still a 19.86% chance of the ballot measure passing, given
that our model is correct.

At this point, the variable outcome holds the proportion of people voting
in favor of the ballot measure in one million simulated elections. To answer
the question, we just need to determine the proportion of those elections in
which the outcome is greater than 0.50: mean(outcome>0.50) will work.

Of course the numbers are nice, but a histogram may tell a better story.
The following code will give a histogram like that in Figure 12.10.

hist(outcome, main="", xlab="Proportion Vote for Ballot
Measure", breaks=-1:99/100)

hist(outcome[outcome>0.50], main="", yaxt="n", breaks=-1:99
/100, col=2, add=TRUE)

axis(1, at=0.50, labels="50%")
pp = length(which(outcome>0.50))/trials
text(0.75,trials/100, paste("p=",pp), cex=0.7)

The histogram of the Maine predictions is presented in Figure 12.10.
Note that the expected outcome is still 42%, which we found above, but that
there is a spread to that prediction the histogram makes manifest, which confidence interval
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the single prediction did not. In fact, prior to this analysis, we may have
concluded that there was no possibility that the ballot measure would pass
in Maine based on our model; now, we see that there is a 20% chance of the
ballot measure passing.6

§ § §

Thus, we have the answer to our original question. Given that our model
is correct, there is approximately a 20% chance that the ballot measure to
define marriage in terms of one man and one woman will pass in Maine,
with a point prediction of 42% in favor of the bill.point prediction

12.5: Conclusion

In this chapter, we started our entry into what is arguably the most important
part of statistical analysis in the real world: Regression—attempting to de-
termine the relationship between continuous variables. The hypotheses we
tested in this chapter were straight-forward, and the question we answered
was rather interesting, if unorthodox.

We also mentioned the assumptions of ordinary least squares regres-
sion, which is the method used to estimate the parameters of our linear
model. In the next chapter, we will cover those assumptions in some detail.

As you leave this chapter, please keep in mind three important things.

• First, remember that you must know your data before you can analyze
it.

• Second, remember that you must test your assumptions before you can
be satisfied with the model (Chapter 13).

• Finally, remember what the numbers in the regression table actually
mean (for instance, Table 12.4).

All three of these are extremely important. If you forget any of these, your
analyses will be incomplete at best and incorrect at worst.

6As with all statistical analysis, the caveat is that the model and the assumptions must be
correct. In the next chapter, we cover the assumptions of OLS—the method used to estimate
the model parameters.
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12.6: End of Chapter Materials

12.6.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Statistics:

cor(x,y) This function determines the correlation between two vectors of
data (of the same length). You may be able to use the shortcut to
find the correlations between all of the variables in a data set by us-
ing cor(data). Unfortunately, this shortcut (‘bug’) has been removed
in recent versions of R.

cor.test(x,y) This function calculates the correlation between two vectors
and performs a parametric test determining whether these two vectors
are statistically correlated.

lm(formula) This function performs linear regression on the data, with the
supplied formula. As there is much information contained in this func-
tion, you will want to save the results in a variable.

predict(model, newdata) As with almost all statistical packages, R has a
predict function. It takes two parameters, the model, and a dataframe
of the independent values from which you want to predict. If you omit
newdata, then it will predict based on the independent variables of
the data itself, which can be used to calculate residuals. The dataframe
must list all independent variables with their associate new values. You
can specify multiple new values for a single independent variable.

Graphing:

axis(n, label, at) This adds annotations label to the axis located on side n
(1=x, 2=y) at the provided place, at.

lines(x,y) This graphing function adds lines to a currently-open plot, con-
necting the points described in the vectors x and y.

text(x,y,t) Adds text t to the active plot at position x, y.
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12.6.2 Extensions This section offers suggestions on things you can prac-
tice from this chapter. Save the scripts in your Chapter 12 folder.For each of
the following problems, please save the associated R script in the chapter
folder as ext0x.R, where x is the problem number.

Summary:

1. How is regression different from t-tests and the analysis of variance
procedure of Chapter 7?

2. What is a PRE measure? How is R2 a PRE measure? How is R
2

a PRE
measure? How can both be PRE measures if their formulas are differ-
ent?

3. What is the difference between the classical linear model and ordinary
least squares?

Data:

4. With the ssm datafile, what is the correlation between the year passed
and whether the ballot measure banned civil unions? Is it a statistically
significant correlation?

5. Note that the percent of the people in Iowa claiming to be religious is
46%. If, in the year 2015, the voters of Iowa are faced with a ballot mea-
sure defining marriage as one man plus one woman, but not restricting
civil unions, what is the predicted vote in favor of the ballot measure?

6. A different, although related, question is “What is the probability that
the ballot measure passes in Iowa?” Note that the previous question
concerned the expected vote. This question emphasizes that the previ-
ous answer was just an estimate. Here, we need to run many simulated
elections and determine the proportion of those simulated elections re-
sulting in a win. Now, estimate the probability that this ballot measure
passes in Iowa.

7. For the sake of education, let us assume that Mississippi considered
putting such a ballot measure before the people in 1994, including a
ban on recognition of civil unions. The percent of people claiming to be
religious in Mississippi is 85%. According to the model, what would be
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the expected proportion of the vote in favor of the referendum? What
would have been the probability of it passing? What is wrong with
these estimates?

8. The crime datafile has variables for violent crime rate and property
crime rate in both 1990 and 2000 (vcrime90, vcrime00, pcrime90,
and pcrime00). These four variables suggest six different bivariate re-
gressions (one independent variable and one dependent variable). Per-
form those six regressions. Check the assumptions of ordinary least
squares for each of the six regressions. Check the logic of each of the six
regressions. Settle on a single regression model—the best of the group
according to you. Create an appropriate graphic. Add a prediction line
to that graphic. Thoroughly explain the results of your analysis in this
problem.

Monte Carlo:

9. The ssm datafile also contains the variable churchAttendance. This
variable is the percent of the population who claims to attend church
at least once weekly. However, there are no measurements for Alaska
and Hawaii, hence the NA values. Using the data, create a model and
estimate the church attendance percent for Alaska and Hawaii. In the
ssm data, replace the NAs with the values you estimated. Save this new
dataset as ssmx.csv.

10. Now that you have a full dataset from Problem 9, use church atten-
dance in lieu of state religiosity in a new model, called model.x. What
is the expected proportion of the vote in favor of the ballot measure in
Maine using this dataset?

11. From Problem 10, what is the probability that the ballot measure will
pass in Maine? Why will your answer be slightly different from that of
others?
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12.6.3 Applied Research This section offers some applied research works
that are connected with the topics in this chapter.

• Christopher Achen. (1992) “Social psychology, demographic variables,
and linear regression: Breaking the iron triangle in voting research.”
Political Behavior 14(3): 195–211.

• Colleen L. Barry, Victoria L. Brescoll, Kelly D. Brownell, and Mark Schl-
esinger. (2009) “Obesity Metaphors: How Beliefs about the Causes of
Obesity Affect Support for Public Policy.” The Milbank Quarterly 87(1):
7–47.

• Ko Maeda. (2010) “Factors behind the Historic Defeat of Japan’s Liberal
Democratic Party in 2009.” Asian Survey 50(5): 888–907.

• Nolan McCarty, Keith T. Poole, and Howard Rosenthal. (2009) “Does
Gerrymandering Cause Polarization?” American Journal of Political Sci-
ence 53(3): 666–680.

• Brian Kelleher Richter, Krislert Samphantharak, and Jeffrey F. Tim-
mons. (2009) “Lobbying and Taxes.” American Journal of Political Sci-
ence 53(4): 893–909.

• Jaime E. Settle, Christopher T. Dawes, and James H. Fowler. (2009)
“The Heritability of Partisan Attachment.” Political Research Quarterly
62(3): 601–13.
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