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In the previous three chapters, we learned how to perform
tests of population means. In each case, we required that
the measurements were interval/ratio level data. With-
out that assumption, mathematics on the measurements
would have little meaning. However, not all interesting
data is interval/ratio level. Some data is nominal, such
as gender or religion. In the next chapter, we will learn
how to perform some tests on multi-category data. In this
chapter, we concern ourselves with binary data.

This chapter continues testing simple hypotheses.
Whereas in the past we have tested population means,
here we test population proportions. All tests herein
stand upon the Binomial distribution or its Normal ap-
proximation.

§ § §

An opinion poll performed prior to the 2012 US Presi-
dential election found that 370 of the 900 respondents
stated they would vote for Barack Obama; 340 for Mitt
Romney; and 290 would not vote. What is a symmetric
95% confidence interval on the proportion of people
supporting Mitt Romney in the United States?
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Not all variables are interval-level or higher. At times, you need to determine
the proportion of a population that has a specific characteristic. This char-
acteristic could be “blonde hair,” or “favors Pepsi,” or “is bilingual.” The
techniques learned in the past chapters do not directly lend themselves to
such dependent variables.

However, it is rather straight-forward to test hypotheses and to esti-
mate population proportions using our current knowledge. In this chapter,
we will cover the Binomial test and the proportions test. The first is used to
learn about the population proportion for a single population. The latter is
used to compare population proportions of two independent populations.

8.1: The One-Population Proportion Test

The derivation of the Binomial test follows directly from our knowledge of
the Binomial distribution (Appendix A.3). Recall that the Binomial distri-
bution is the sum of n independent Bernoulli trials with a constant success
probability.

The quintessential example of a Binomial experiment is flipping a coin
n times and counting the number of heads. In this example, the success
probability remains constant, the results of the coin flips are independent of
each other, and the outcome variable is the number of successes. Thus, if we
define H as the number of heads, the distribution of H is

H ∼ Bin(n,π)

Here, n is the number of coin flips and π is the probability that the coin lands
Head on any one flip. The parameter of interest is π.

8.1.1 Hypothesis Testing To test hypotheses, one specifies the hypothe-
sized value of π. With that information, we know all probabilities associated
with the experiment.

For instance, if n = 3 and we hypothesize π = 0.50, then we know
P [H = 0] = 0.125, P [H = 1] = 0.375, P [H = 2] = 0.375, and P [H = 3] =
0.125. We also know P [H ≤ 1] = 0.500 and P [H ≤ 2] = 0.875. If we perform
this experiment and observe zero heads, then we know the corresponding
p-value would be

p-value = P [H = 0] +P [H = 3] = 0.250
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This calculation assumes that the alternative hypothesis is π , 0.500. If the
alternative hypothesis were π < 0.500, then the p-value would just be 0.125.
Were the alternative hypothesis π > 0.500, then the p-value would be 1.000.

In all cases, remember the definition of the p-value: It is the proba-
bility of observing data this extreme or more so, given the null hypothesis is
true.

Example 8.1: At the national level, Oregon is a Democratic state. I hy-
pothesize that 50% of all voting Oregonians will vote Democratic in the next
presidential election.

To test this hypothesis, I call a random sample of n = 1000 Oregonians
and ask them how they will vote. Of the 1000, x = 545 stated that they would
vote for the Democratic candidate.

Do the data support my hypothesis?

Solution: Let us define the random variable D as the number of Oregonians
in a sample of 1000 who state they will vote for the Democratic candidate.
In this survey, I recorded d = 615.

Under the null hypothesis, we have

D ∼ Bin(n = 1000,π = 0.50)

The expected value of D is E [D] = 1000 × 0.50 = 500. I observed d = 545.
Thus, the p-value would be

p-value = P [D ≤ 455] +P [D ≥ 545]

The 545 came from what we observed. The 455 is the value above the ex-
pected value that is just as extreme as what we observed; that is, 455 =
500− (545− 500). Using R,

pbinom(455, size=1000, prob=0.50) +
(1-pbinom(544, size=1000, prob=0.50))

the p-value is 0.004861736. As this is less than α = 0.05, we conclude that
there is significant evidence against the hypothesized value of π = 0.50. Since
the observed proportion was π̂ = 0.545, we can conclude that the proportion
of Oregonians voting Democratic in the next presidential election is greater
than 0.50. �
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The P-Values: The calculation of the p-value is frequently not so straight
forward. Its definition refers to “data as extreme or more so.” Determining
what is “as extreme” is not always easy.

One set of observed data is as extreme as a second set if the probability
of observing them is the same. In the previous example, the probability of
observing D = 545 is 0.0004388554. Thus, to find the corresponding value
below 500 that is just as extreme as this, we need to search through all possi-
ble values and select the largest one with a probability less than this:

for(x in 0:500) {
targetProbability = dbinom(545, size=1000, prob=0.500)
thisProbability = dbinom( x, size=1000, prob=0.500)
if( thisProbability > targetProbability ) break

}
print(x-1)

Running this snippet gives a value of 455. Thus, observing 455 is just as
extreme as observing a value of 545.

Note: This value is not too surprising: 455 = 1000− 545. However, when
the underlying distribution is not symmetric, calculating the “other ex-
treme value” requires some type of loop.

One option for estimating the p-value is to just use the doubling rule. If the
underlying distribution is continuous, this will be exact. Since the under-
lying distribution is discrete, the resulting p-value will be slightly different
than it should be.

Example 8.2: At the national level, Oklahoma is a Republican state. I hy-
pothesize that 66% of all voting Oklahomans will vote Republican in the next
presidential election.

To test this hypothesis, I call a random sample of n = 1000 Okla-
homans and ask them how they will vote. Of the 1000, x = 615 stated that
they would vote for the Republican candidate.

Do the data support my hypothesis?

Solution: Again, let us define the random variable R as the number of Ok-
lahomans in a sample of 1000 who state they will vote for the Republican
candidate. In this survey, I recorded r = 615.
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Under the null hypothesis, we now have

R ∼ Bin(n = 1000,π = 0.66)

The expected value of R is E [R] = 1000 × 0.66 = 660. I observed r = 615.
Thus, the p-value would be

p-value = P [R ≤ 615] +P [R ≥???]

To determine the upper extreme value, symbolized with ??? here, run the
code snippet from above, with the appropriate changes:

for(x in 1000:500) {
targetProbability = dbinom(615, size=1000, prob=0.66)
thisProbability = dbinom( x, size=1000, prob=0.66)
if( thisProbability > targetProbability ) break

}
print(x+1)

This gives a value of 705. The p-value is

p-value = P [R ≤ 615] +P [R ≥ 705] = 0.002956647

the p-value is 0.002956647. As this is less than α = 0.05, we conclude that
there is significant evidence against the hypothesized value of π = 0.66. Since
the observed proportion was π̂ = 0.615, we can conclude that the proportion
of Oklahomans voting Republican in the next presidential election is less
than 0.66.

For the record, the doubling approximation is

p-value = 2×P [R ≤ 615] = 0.003225845

This is larger than the true p-value, although the same substantive conclusion
holds. �

The P-Values, Again*: The definition of the p-value is that it is the proba-
bility of observing data this extreme, or more so, given the null hypothesis is
true. A more general way of calculating the p-value is just to add the proba-
bility of all possible outcomes that are as extreme or more extreme that what
was observed.

There is nothing different in this statement. The difference comes
when the underlying distribution is not unimodal. The following steps to
calculate the p-value will always work:
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1. Calculate the likelihood of the observed data, given the null hypothesis
is true.

2. Determine which values are as likely, or less likely, than what was ob-
served.

3. Add the probabilities of each of these outcomes.

This sum will be the p-value. The next example shows how to do this general
method in R.

Example 8.3: An associate hypothesized that more people preferred Pepsi
to Coke. To test this hypothesis, she interviewed n = 1000 people. Of those
people, 535 stated that they preferred Pepsi.

Do the data support her hypothesis?

Solution: Let us define X as the number of people in a sample of 1000 who
prefer Pepsi to Coke. We observed x = 535. We hypothesize

X ∼ Bin(1000,π = 0.500)

This is a nice distribution, because it is unimodal and symmetric. Thus, any
of the above techniques will work, allowing us to check our work.

Here, however, let us use the general method for calculating p-values:

obs = dbinom(535, size=1000,prob=0.500)
out = 0:1000
ext = which( dbinom(out,size=1000,prob=0.500) <= obs )
sum( dbinom(out[ext],size=1000,prob=0.500) )

The first line calculates the likelihood of what was observed. The second line
defines the sample space. The third line determines which elements of the
sample space are as extreme, or more so, than what we observed. The fourth
line calculates the p-value as the sum of those extreme probabilities.

Running this, we get a p-value of 0.02906112. As this is less than
α = 0.05, we reject the non-directional null hypothesis and conclude that the
proportion of people preferring Pepsi over Coke is not 50%.

Note, however, that the stated null hypothesis was that more people
preferred Pepsi to Coke; that is: πP > 0.500. To determine the p-value asso-
ciated with this hypothesis, run
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obs = dbinom(535, size=1000,prob=0.500)
out = 500:1000
ext = which( dbinom(out,size=1000,prob=0.500) <= obs )
sum( dbinom(out[ext],size=1000,prob=0.500) )

This gives a p-value of 0.01453056. Here, we reject the null hypothesis and
conclude that more people prefer Pepsi to Coke. �

8.1.2 Confidence Intervals In general, a confidence interval is a set of
values for the population parameter for which the observed data is reason-
able. For this chapter, that means a confidence interval is a set of values for
π. The observed data correspond to p-values greater than or equal to α (or
α/2) for each value in the confidence interval.

Thus, one way of calculating a confidence interval is to run through
every possible value for the parameter, calculate the p-value for each of those
values, and report those which give p-values greater than α (or α/2).

This is the most general method.

In the Pepsi example, the code to calculate an upper bound to a 95%
confidence interval is

ucl = seq(0.535,1, length=10000)
dd = which(pbinom(535, size=1000, prob=ucl)>=0.025)
max(ucl[dd])

This gives an upper bound of 0.5662511. Similarly, a lower bound is 0.5045555:

lcl = seq(0,0.535, length=10000)
dd = which(pbinom(535, size=1000, prob=lcl)<=0.975)
min(lcl[dd])

Thus, one 95% confidence interval for the proportion of people who prefer
Pepsi to Coke is from 0.505 to 0.566.

Confidence Interval Length*: Notice that people refer to a confidence in-
terval, never to the confidence interval. This is because there are an infinite
number of confidence intervals that meet the confidence-level criterion.

Usually, confidence intervals are selected based on tradition, which
means they are selected based on ease of calculation. This usually means
they are “central” or “symmetric” confidence intervals. These are intervals
of the form x ±E, where E is the margin of error.Margin of Error
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A different criterion to use in selecting confidence intervals is to select
the one with the smallest length. The general method above will produce a
minimal-length confidence interval (within rounding).

If the underlying distribution is symmetric, unimodal, and continu-
ous, the central confidence interval will also be the minimal-length confi-
dence interval. In the case of an asymmetric Binomial distribution, this will
not be the case.

The width of the interval given above is 0.061. Using the usual method
for calculating a confidence interval (given below), the width is 0.063.

8.1.3 The R Function The previous sections are important for better un-
derstanding p-values and confidence intervals. However, there is a function
in R that performs these calculations rather quickly.

The function is binom.test. It takes five parameters: the number of
successes, the number of trials, the hypothesized population proportion, the
direction of the alternative hypothesis, and the confidence level.

Example 8.4: Recently, a researcher sought to determine if people could tell
the difference between the different colors of Skittles. To determine this, she
fed Skittles to blindfolded people, recording both the color and flavor stated.

Of the n = 253 Skittle tastings by the 11 people, x = 163 were called
correctly.

Do the data suggest the Skittle colors are not related to the flavors?

Solution: There are five Skittle colors (flavors). If there were no relationship
between the colors and the flavors, one would expect to get the color correctly
20% of the time. Thus, if we define X as the number of Skittles guessed
correctly, the null hypothesis is

X ∼ Bin(n = 253,π = 0.20)

According to the Binomial test, a 95% confidence interval for the pro-
portion of Skittle colors correctly chosen is between 0.5819 and 0.7032. The
p-value associated with the null hypothesis that π = 0.20 is less than one in
10,000. Because the p-value is so small, we reject the null hypothesis and
conclude that the colors and flavors are not independent:

binom.test(x=163, n=253, p=0.20)
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That line of code produces the following output:

Exact binomial test

data: 163 and 253
number of successes = 163, number of trials = 253, p-value

< 2.2e-16
alternative hypothesis: true probability of success is not

equal to 0.2
95 percent confidence interval:
0.5818797 0.7032329
sample estimates:
probability of success

0.6442688

Instead of the default confidence interval given by R, we could use the script
above to calculate a minimal-length confidence interval. According to that
script, the minimal-length confidence interval is from 0.5859 to 0.7032.

ucl = seq(163/253,1, length=1e6)
dd = which(pbinom(163, size=253, prob=ucl)>=0.025)
max(ucl[dd])

lcl = seq(0,163/253, length=1e6)
dd = which(pbinom(163, size=253, prob=lcl)<=0.975)
min(lcl[dd])

The width of the usual confidence interval is 0.1213; of the minimal-length
interval, 0.1173. �
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8.2: The Two-Population Proportion Test

Recall Chapter 6, where we generated a two-sample test based on our knowl-
edge of the one-sample test. In that case, the hypothesized distribution gen-
erating the data was the Normal distribution. We relied on the fact that the
difference between two Normal distributions is also a Normal distribution.

This method will not work with the Binomial distribution. The differ-
ence between two Binomial distribution is not another Binomial distribution.
To easily see this, note that a Binomially-distributed random variable must
be non-negative but that the difference between two such random variables
may be negative.

This means we have two options when exploring the difference be-
tween two Binomial populations. The first is to use the Normal approxima-
tion to the Binomial distribution. The second is to use Monte Carlo simula-
tion to estimate the distribution of the difference. In this section, we do the
former. In the next section, we do the latter.

8.2.1 The Proportions Test Appendix C discusses the Central Limit
Theorem. In short, for distributions with a finite variance, sums and aver-
ages of independent random variables tend to the Normal distribution. This
is what makes the Normal distribution so important in statistics.

The Binomial distribution is the sum of independent Bernoulli ran-
dom variables. It has a finite variance. As such, the Binomial distribution
converges to the Normal distribution with expected value nπ and variance
nπ(1−π). In other words, if X is a Binomially-distributed random variable,
then

X ∼ Bin
(
n,π

)
·
∼ N

(
nπ, nπ(1−π)

)
As n gets larger, this approximation is better.1

Thus, to compare the population proportions of two Binomially-distributed
populations, we have the following approximations:

Px :=
X
nx

·
∼ N

(
πx,

πx(1−πx)
nx

)
1This approximation can also be made better by applying certain “continuity corrections” to

the random variable. For this discussion, we will ignore these corrections.
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Py :=
Y
ny

·
∼ N

(
πy ,

πy(1−πy)

ny

)

This means that the difference between the two population proportions is
distributed

Px − Py
·
∼ N

(
πx −πy ,

πx(1−πx)
nx

+
πy(1−πy)

ny

)
If, as is frequently the case, we wish to test if the two population proportions
are equal, this reduces to

Px − Py
·
∼ N

(
0, π(1−π)

nx +ny
nxny

)
From this, we can get the p-values and confidence intervals as we did back in
Chapter 6.

Example 8.5: In Oklahoma, the speed limit in school zones when children
are not present is 30mph. In an effort to reduce the proportion of people
speeding through the zones, the Stillwater City Council estimated the pro-
portion of people speeding through a specific school zone, installed an elec-
tronic sign that flashed when the car traveled faster than 30 mph, and then
estimated the proportion of cars speeding through the same zone.

Before installing the sign, 50 of 250 cars traveled faster than 35 mph
in the school zone. After installing the flashing warning sign, 75 of 315 cars
traveled faster than 35 mph in the school zone.

Did installing the sign result in a significant change in speeding pro-
portions?

Solution: The null hypothesis, as the question is written, is H0 : πb = πa.
Here, πb is the proportion of people speeding before the flashing sign was in-
stalled, and πa is the proportion speeding after the sign was installed. From
the discussion above, we have

Px − Py
·
∼ N

(
0, π(1−π)

nx +ny
nxny

)
From this, we get a p-value of 0.2785786 and a 95% confidence interval from
−0.1070 to 0.0308. Both indicate that we are unable to detect a difference in
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the proportion of those speeding before and after the signs were installed.
There is no significant evidence that the signs helped curb speeding in the
school zone. �

The above was done without using a continuity correction. As such, its ac-
curacy relies on a large sample size. Unfortunately, without a continuity
correction, the needed sample sizes for a good estimate are rather large. It is
better to use a continuity correction, which the R function does by default:

prop.test( x=c(50,75), n=c(250,315) )

Note that, since we are dealing with two populations, we need to give the
function at least four values: the numbers of successes for sample 1 and for
sample 2, and the numbers of trials for sample 1 and for sample 2. The
function above gives an output of

2-sample test for equality of proportions with
continuity correction

data: c(50, 75) out of c(250, 315)
X-squared = 0.9633, df = 1, p-value = 0.3263
alternative hypothesis: two.sided
95 percent confidence interval:
-0.1100258 0.0338353

sample estimates:
prop 1 prop 2

0.2000000 0.2380952

The Chi-Square Test*: If you look closely at the output from the prop.test
function, you will notice that the test statistic is X2, which is the symbol for
the standard Chi-Square distribution (Appendix B.4). The sum of ν indepen-
dent squared standard Normal random variables has a Chi-Square distribu-
tion with ν degrees of freedom.

Because of this relationship between the Normal distribution and the
Chi-Square distribution, the Chi-Square distribution is typically used to com-
pare population proportions. While R could have used the Normal distribu-
tion above, the Chi-Square distribution is necessary when there are more
than two possible outcomes per population. This, we will cover in Chapter
10.
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8.2.2 Monte Carlo Simulation The reason that the proportions test is
only approximate is that we do not know the exact distribution of the test
statistic. In lieu of using the Normal approximation, which requires moder-
ately large sample sizes, we can simulate the distribution of the test statistic.
This will give us a distribution against which to compare our observed data.

to illustrate the method, let us return to the speed zone example from
above.

Example 8.6: Before installing the sign, 50 of 250 cars traveled faster than
35 mph in the school zone. After installing the flashing warning sign, 75 of
315 cars traveled faster than 35 mph in the school zone.

Solution: The first step is to determine an appropriate test statistic. Many
will work, as long as the test statistic is directly related to the parameters
of interest. Here, because we are comparing the difference in population
proportions, let us use the difference in the sample proportions as our test
statistic.

Next, we need to generate random draws from the appropriate distri-
butions. From above, we know

X ∼ Bin (nx, πx) = Bin(250, π̂)

Y ∼ Bin
(
ny , πy

)
= Bin(315, π̂)

Notice that these are the exact distributions. Here, π̂ is the observed speeding
proportion, π̂ = (50 + 75)/(250 + 315) ≈ 0.2212.

Next, we repeatedly draw from these two distributions and calculate
the test statistic for each.

Finally, we compare our observed test statistic ( 50
250 −

75
315 ≈ −0.0381) to

the distribution above. This gives our p-value and a confidence interval.
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The actual code for the p-value is

obs = 50/250-75/315

X = rbinom(1e6, size=250, prob=125/565 )
Y = rbinom(1e6, size=315, prob=125/565 )

Px = X/250
Py = Y/315

TS = Px-Py

mean( TS<=obs ) * 2

According to this, the p-value is 0.280. Thus, we lack sufficient evidence that
the new signage reduced the speeding proportion.

The code for the confidence interval is

X = rbinom(1e6, size=250, prob=50/250 )
Y = rbinom(1e6, size=315, prob=75/315 )

Px = X/250
Py = Y/315

TS = Px-Py

quantile( TS, c(0.025,0.975) )

Thus, a 95% confidence interval for the difference in speeding proportions is
from −0.106 to 0.030. �

Note: Remember that p-values are based on the null hypothesis and the
data. The confidence interval is based solely on the data. This is why
the distribution of X and Y differ between the two calculations. For the
p-value calculation, the X and Y values are generated from the null hy-
pothesis. For the confidence interval calculation, they are generated from
the observed data.
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8.3: Conclusion

This chapter introduced methods for learning about population proportions.
In previous chapters, we examined population means.

Because we dealt with population proportions, the Binomial distri-
bution became very important. It served as the underlying distribution for
observed cell counts. The one-sample test for proportions was the Binomial
distribution.

Unfortunately, when exploring differences between two population
proportions, we could not justify the distribution of the test statistic being
Binomial. We had two options: use the Normal approximation or use Monte
Carlo simulation. The first led to the proportions test with its test statistic
distributed Normal or Chi-Square. The second led to a simulated distribu-
tion, from which we could obtain the p-value and a confidence interval.

One assumption that we made throughout this chapter is that the
counts were distributed according to a Binomial distribution. This is usually
an easy assumption to make as the counts really are the sum of independent
Bernoulli events. However, this assumption does not always hold. When
dealing with geographic groups, it is likely that the events are not indepen-
dent; like people tend to live near each other. When the Bernoulli events
are not independent, their sums will not be Binomial. If their sums are not
Binomial, this chapter is of little use.
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8.4: End of Chapter Materials

8.4.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Statistics:

binom.test(x,n,p) Returns the p-value and a confidence interval (95% is the
default) for x successes in n trials against the hypothesis that π = p. By
default, p = 0.500.

prop.test(x=c(x1,x2),n=c(n1,n2),p) Returns the p-value and a confidence
interval (95% is the default) for x successes in n trials against the hy-
pothesis that π = p. Here, however, x is a vector of two values, as is n.
By default, p = 0.500.

Probability:

rbinom(n, size, prob) This returns n random values drawn from a Binomial
distribution with size trials and success probability prob.

rnorm(n, m, s) This returns n random values drawn from a Normal distri-
bution with mean m and standard deviation s. By default, m = 0 and
s = 1.
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8.4.2 Exercises and Extensions This section offers suggestions on things
you can practice from this chapter.

Summary:

1. What are the two parameters for a Binomial distribution?

2. What are the two parameters for a Normal distribution?

3. What is the ratio of the variance to the mean for a Binomial distribu-
tion?

4. Can the ratio of the variance to the mean be greater than 1? Either give
an example where it is greater than one or explain why it is impossible.

5. What is the relationship between a Normal distribution and a Chi-
Squared distribution?

Theory:

6. Let Y ∼ N (0,1). What is the distribution of Y 2?

7. Let Y ∼ N (1,1). What is the mean of Y 2? What is the variance of Y 2?

8. Let Y ∼ N (2,1). Calculate P [Y ≤ 2].

9. Let Y ∼ N (3,1). Define Z = Y − 3. What is the distribution of Z2?
Calculate P

[
Y 2 ≤ 9

]
. Calculate P

[
Y 2 ≤ 1

]
.

10. Let X ∼ Bin(100,0.500). What is Normal approximation for X? Calcu-
late P [X ≤ 50] for both the exact distribution and for the approxima-
tion. Comment on the closeness of the estimates to each other.

11. Let W ∼ Bin(3,0.001). What is the Normal approximation for W ? Cal-
culate P [W ≤ 1] for both the exact distribution and for the approxima-
tion. Comment on the closeness of the estimates to each other.
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Data:

12. At a different school zone, a researcher randomly sampled from all peo-
ple passing through. On Monday morning, 15 of 290 traveled faster
than 35 mph. On Friday afternoon, 75 of 182 traveled faster than 35
mph. Is there significant evidence that Friday afternoon drivers speed
more often through the school zone than do Monday morning drivers?

In addition to the above hypothesis test, provide 95% confidence inter-
vals for the proportion of cars speeding through the zone on Monday
mornings and on Friday afternoons.

13. The someCollege datafile contains seven variables measured on an
allegedly random sample of the students at a small liberal arts college.
Assuming this is indeed a random sample, what proportion of the stu-
dents are from a public high school? Are males more or less likely to
be home schooled?

In both cases, provide 95% confidence intervals for the population pro-
portion.

Monte Carlo:

14. A certain manufacturer claims that 99.99% of their USB drives are free
of defects. To test this hypothesis, I test 100 of their USB drives. Of
those 100, only 1 was defective. Do the data provide sufficient evi-
dence against the manufacturer’s claim? Provide both a p-value and a
confidence interval.

Use the Binomial test, the proportions test, and Monte Carlo simulation
to answer this question. Compare and contrast the three methods.

15. A researcher stated that only 1% of all students at a specific university
could locate Sri Lanka on a world map. To test this, he asked 15 people
to locate Sri Lanka; one could. Do the data support his hypothesis?

Use the Binomial test, the proportions test, and Monte Carlo simulation
to answer this question. Compare and contrast the three methods.

237



8.4.3 Applied Research This section offers some readings that are con-
nected with the topics in this chapter.

•
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