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This chapter continues examining procedures concern-
ing population means. In Chapter 5, we introduced tests
and confidence intervals covering means of a single pop-
ulation. In Chapter 6, we introduced tests and confi-
dence intervals comparing means of two populations. In
this chapter, we formulate tests comparing the means
of more than two populations. Along with the usual as-
sumptions of independence and of Normally-distributed
measurements in each population, the parametric test
requires the populations to have the same variance.

§ § §

There are a total of six major conferences and five
mid-major conferences in the Division I Football Bowl
Subdivision (FBS). The six major conferences in 2009
were the Atlantic Coast Conference (ACC), Big East
Conference, Big Ten Conference, Big 12 Conference,
Pacific-10 Conference (Pac-10), and the Southeastern
Conference (SEC). In terms of points scored in the games,
does any major conference score significantly more
points than any of the other major conferences?
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Thus far, we have only examined tests that help us to compare one sample
to a proposed population mean or to compare the means of two samples—in
either case, running one test. Unfortunately, we often have several samples
or groups among which we want to compare means. We may be tempted to
continue using the methods from the previous chapter and just apply these
pairwise tests to each possible pair of populations. There are two problems
with this, however. The first problem is the sheer number of pairwise tests
one would have to perform. For the introductory example, one would need
to perform

(6
2
)

= 15 pairwise tests. multiple comparisons

The second issue is the inflation of the Type I Error rate if you do per-
form all 15 tests. Recall that the level of a test is the actual Type I Error rate,
the true probability of rejecting a true null hypothesis. Each test we perform
has that same nominal error rate, α. Performing multiple tests increases the
Type I Error rate of the entire experiment. The amount of increase depends experiment-wise

error rateon several factors, including the level of independence between the tests. We
can, however, easily calculate an upper bound on how much the Type I Error
rate increases.

7.1: The Multiple Comparisons Issue

To see the multiple comparisons issue, let use suppose our null hypothesis is

H0 : µ1 = µ2 = µ3

That is, we wish to test if the three groups have the same mean. This null
hypothesis actually contains three pairwise tests:

H1
0 : µ1 = µ2

H2
0 : µ1 = µ3

H3
0 : µ2 = µ3

Recall that the Type I Error rate is the probability of rejecting a true null
hypothesis. We would like this error rate to be held to (at most) α. However,
if we reject each of the three sub-tests at the α level, then the Type I Error
rate for the entire experiment, our “experiment-wise” Type I Error rate (also
known as the familywise error rate, FWER), is not α. It could be upwards of
three times the claimed α level.
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Theorem 7.1. Let the null hypothesis require k tests. Requiring that each sub-test
has a Type I Error rate of α/k, also called the per-comparison error rate, controlsper-comparison

error rate the experiment-wise error rate to α.

Proof. For each of the k tests, let Ei be defined as the event of “rejecting the
true null hypothesis.” Let us reject each of those k tests at a rate of ε, the
per-comparison error rate. That is, let

P [Ei] = ε, for all i.

Then, if we require the experiment-wise Type I Error rate to be no greater
than α, we have

α = P

 k⋃
i=1

Ei


≤

k∑
i=1

P [Ei]

=
k∑
i=1

ε

= kε

Solving for the per-comparison error rate gives ε = α/k.

Note: This adjustment method was devised by Edward Paulson (1952)
and Olive Dunn (1958) and named after Italian mathematician Carlo
Emilio Bonferroni whose inequalities made the original proofs possible.

The Bonferroni Correction is a method used to address the issue of in-
flated Type I Error rates caused by multiple testing in statistics. Its strength
is its ease of use. Its weakness is its high level of conservatism. To use theconservative
Bonferroni method, merely divide your stated α level by the number of tests,
k. (Equivalently, you can multiply your p-values by k.) Thus, if you are per-
forming the 15 pairwise tests of the opening example, you would reject any
null hypotheses that produced a p-value of less than 0.05/15 = 0.0033.

Again, the Bonferroni correction is conservative; that is, the true experiment-power loss
wise Type I Error rate is never more than α, and will most likely be less. How-
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ever, unless we know the relationships between the tests and hypotheses, it
is our best upper-bound.1

Since this method was created, many other statisticians have devel-
oped multiple testing methods based on assumptions of the relationships
between the tests and hypotheses. We will cover some of these in Section 7.5.

The only sure way to avoid multiple testing issues is to perform only
one test; that is, create a single test statistic with a single distribution. Thus,
much of the early 20th Century was spent creating a procedure to compare
multiple group means by way of a single test. Ronald A. Fisher (1918) fi-
nally created the analysis of variance procedure (ANOVA), which achieves
this goal.

7.2: Analysis of Variance

The extension of the t-test was developed by Ronald A. Fisher (1918, 1921,
1925). At its simplest, the analysis of variance procedure is merely an ex-
tension of the t-test. Recall from Section 6.1, where we formulated the t-test t-test
comparing the means of two populations. The test statistic was similar to

t =
x − y

standard error

which has a tν distribution, where ν is the number of degrees of freedom. If
we want to compare three populations, it would seem very straight-forward
to create a test statistic being the sum of the individual pairwise t-statistics.
Let us see the difficulty with this test statistic.

Example 7.1: Four varieties of rice are each grown in each of four different
fields and their yields are measured (Table 7.1). Are the four varieties es-
sentially the same with respect to yield, or does one variety tend to do much
better than the other three?

1Actually, the Holm procedure (1979) is always better than the Bonferroni procedure.
To perform the Holm procedure, rank the p-values from smallest to largest. Multiply the
smallest by k, the second smallest by k−1, the third-smallest by k−2, etc. Reject all hypotheses
where the adjusted p-value is less than α.
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Variety Yields

A 934 1041 1028 935
B 880 963 924 946
C 987 951 976 840
D 992 1143 1140 1191

Table 7.1: Yields from four varieties of rice planted in each of four different fields. This
rice data is used in Example 7.2.

A Really Bad Solution: Let us calculate the t-test statistics for each possible
pair of Rice Varieties. Recall that the test statistic for the two-sample t-test is

t =
x − y

sp
√

1
nx

+ 1
ny

Using this formula on the Rice data, we have the following test statistics:

Varieties Test Statistic Varieties Test Statistic

A-B 1.6496 B-C -0.2685
A-C 1.0350 B-D -4.0308
A-D -2.5407 C-D -3.2533

Adding these values together gives −7.4088.

So far, so good. However, if we change the order of the testing—if we
change the order of the nominal variable —we get the following test statistics:nominal

Varieties Test Statistic Varieties Test Statistic

A-C 1.0350 C-D 3.2533
A-D -2.5407 C-B 0.2685
A-B 1.6496 D-B 4.0308

This has a sum of 7.6965.2

2Note that the magnitudes of the individual test statistics is the same. They only differ in
their signs.
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This is a problem. The test statistic depends on the ordering of a nom-
inal variable—something without an inherent ordering. This means the test
is very bad. �

Fisher’s first solution to this problem was to sum the squares of the
individual t-statistics. This solves the above issue, since squaring makes the
positive/negative issue vanish. Unfortunately, this sum was not standard-
ized. Without standardization, the distribution of the test statistic is more
difficult to write. And, without having such a distribution, we cannot know
if the test statistic is “big enough” to reject the null hypothesis.

Fisher was able to perform enough adjustments and make enough as-
sumptions. He created a test statistic that was “simple” to write and had a
knowable probability distribution. F distribution

Fisher’s test statistic is the ratio of the variance between the groups
(MSB) to the variances within the groups (MSW), a ratio of variances:

F =
MSB
MSW

(7.1)

The distribution of this test statistic is (conveniently) the F distribution. For
this test statistic, note the following two points: +

• Larger ratios indicate that the variance within the groups is small com-
pared to that between, that the grouping is appropriate, that the groups dependent
are not all the same with respect to the measurement.

• Smaller ratios indicate that the variance within the groups is large com-
pared to that between, therefore knowing the group tells us little about
the expected values within the groups, which also implies that the independent
groups are not significantly different.

To get a better understanding of the calculations, let us work through an
example.

Example 7.2: Four varieties of rice are each grown in each of four different
fields and their yields are measured (Table 7.1). Are the four varieties es-
sentially the same with respect to yield, or does one variety tend to do much
better than the other three? non-directional
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Solution: Were we only comparing two different varieties of rice, we would
use a t-test. Here, however, we are comparing four different varieties. Thus,
we will use the analysis of variance method. The null hypothesis is

H0 : µA = µB = µC = µD

The alternate hypothesis is that at least one of the four rice varieties has a
different mean. We can write this as

HA : µA , µB or, µA , µC or, µA , µD or,

µB , µC or, µB , µD or, µC , µD

or as

HA : At least one mean differs from the others

To test this hypothesis using the analysis of variance method, we first calcu-ANOVA
late the mean yield for each variety. Knowing the means allows us to calcu-
late the sums of squares for each variety. The mean is calculated as usual,
allowing for the added complexity in varying group sizes. The mean mea-
surement in group i is

yi =
1
ni

ni∑
j=1

yi,j

The four group sample means are yA = 984.50, yB = 928.25, yC = 938.50, andgroup means
yD = 1116.50.

The formula for the sums of squares within each group is

SSi =
ni∑
j=1

(
yi,j − yi

)2

The four sums of squares are SSA = 10085, SSB = 3868.75, SSC = 13617, and
SSD = 22305. Thus, the overall sum of squares within is SSW = 49875.75, theSSW
sum of these. As there are L = 4 groups and n = 16 data points, the number
of degrees of freedom are 16 − 4 = 12. Thus, the total variance within the
groups is

MSW =
SSW
n−L

=

∑
j(yi,j − yi)2

n−L
=

∑
i SSi
n−L

=
SSW
n−L

=
49875.75

12
= 4156.31
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This is the denominator in our ratio. It measures how much of the variation
in the data is not explained by the grouping. Smaller values tend to indicate
the grouping is more appropriate.

The numerator is the variance between the groups. Its calculation is
slightly different. First, we start with the sum of squares between:

SSB =
1
ν

n∑
i=1

(yi,· − y·,·)2

=
L∑
i=1

y2
i,·
ni
−

y·,·∑L
i=1ni

Here yi,· is the sum of the yields for variety i, and y·,· is the sum of all yield
values. For this data, yA,· = 3938, yB,· = 3713, yC,· = 3754, and yD,· = 4466, and
y·,· = 15,871. Thus, the SSB = 89931.19. The number of degrees of freedom
is one less than the number of groups, L− 1 = 3. Thus, the variance between
the groups is

MSB =
SSB
L− 1

=
89931.19

3
= 29977.06

This number is the variation explained by the grouping. A larger value here explained variation
(as compared to the residual variation) indicates that the grouping is more
appropriate.

The test statistic is the ratio of these two variances: test statistic

F =
MSB
MSW

=
29977.06
4156.31

= 7.21

This means that the explained variation is 7.21 times higher than the unex-
plained variation. A larger number means that the grouping is more appro-
priate. But, how big is enough to conclude that this reduction is due to the
grouping and not just to randomness?

From work by Fisher and George W. Snedecor (1934), this test statistic
is distributed according to the F distribution with two types of degrees of
freedom: numerator and denominator. The “numerator degrees of freedom”
are the degrees of freedom for the MSB: one less than the number of groups,
L− 1. The “denominator degrees of freedom” are the degrees of freedom for
the MSW, the number of data points less the number of groups, n−L.

This test will always be a one-tailed test. (Why?) A plot of the dis- non-directional
tribution, along with the value of the test statistic (F) is provided in Figure
7.1.
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Figure 7.1: A plot of the distribution of the test statistic in the Rice example. The value of
the calculated test statistic is shown on the x-axis. As the test statistic is in the rejection
region, we reject the null hypothesis and conclude that there is a difference among the rice
varieties.

With that said, the critical value is

F0.95,3,12 = qf(0.95, df1=3, df2=12) = 3.490295

As our test statistic is greater than the critical value, we reject the null hy-
pothesis at the α = 0.05 level and conclude that at least one of the rice vari-
eties is different from the others (F = 7.21, cv = 3.49).

Alternatively, as we have access to a computer, we could have calcu-
lated the actual p-value for our test statistic. Using the commandp-value

pf(7.21, df1=3, df2=12, lower.tail=FALSE)

gives us a p-value of p = 0.00504. From this, we also conclude that there
is a statistically significant difference amongst the four rice varieties (F =
7.21,νn = 3,νd = 12,p = 0.00504). �

Example 7.3: Looking back to the opening example, an associate of mine
claimed that all football conferences scored essentially the same number of
points per game on average. Using the data from 2009, let us test her claim.

research hypothesis
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Figure 7.2: A boxplot of the number of points scored in a football game, compared across
the six major conferences. Note that the medians are all approximately equal across the six
conferences. As such, we would expect to see no statistically significant difference among
the six conferences.

Solution: Notice that her claim is actually the null hypothesis (it contains the
“no difference” condition). As there are six conferences, the null hypothesis equal
is

H0 : µACC = µBig East = µBig Ten = µBig 12 = µPAC-10 = µSEC

The alternative hypothesis is that at least one of the conferences scored sig- alternative hypothesis
nificantly more points than the others.

Let us first examine a boxplot of the data to determine if the null hy-
pothesis seems reasonable. The boxplot in Figure 7.2 strongly suggests that
we will find no statistically significant difference in scores between any of the
football conferences. Let us perform analysis of variance to determine if this
conclusion is actually supported by the data.
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I will leave it as an exercise for you to verify the results summarized
in Table 7.2, which is referred to as an ANOVA table . Note that MST (MeanANOVA table
Squared Total) is just the variance of the original data (the scores).

Using the results of the analysis of variance procedure, we can con-
clude at the α = 0.05 level that there is no statistically significant difference
among the six NCAA conferences in terms of points scored (F = 0.6343,νn =
5,νd = 774,p = 0.6736). �

Note: This is equivalent to concluding that knowledge of the conference
give no additional information about our best guess for the number of
points scored by a given team. In other words, the grouping variable and
the dependent variable are independent of each other.independent

Note that the null hypothesis was that the (population) means in each
group are equal. The analysis of variance procedure cannot easily test a hy-weakness
pothesis such as “The Big 12 Conference scored more points, on average,
than any other single conference.”

HR : µBig 12 > µACC and

µBig 12 > µBig East and

µBig 12 > µBig Ten and

µBig 12 > µPac-10 and

µBig 12 > µSEC

To test this hypothesis, we would have to perform multiple comparisons withmultiple comparisons
the Big 12 conference singly compared to each of the other five conferences;
that is, we would have to perform five t-tests (or Mann-Whitney tests or per-
mutation tests).

Additionally, we would also need to perform a Bonferroni adjustment
(Section 7.1) since we are performing multiple tests on the same researchBonferroni
hypothesis. The number of tests is k = 5, thus we would reject the null hy-
pothesis only when the calculated p-value was less than α

k = 0.05
5 = 0.01.

7.2.1 Assumptions As the analysis of variance procedure grew out of the
t-test, the assumptions are the same as for the original t-test: The measure-
ments are Normally distributed in each sub-population; the variances are the
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Source Sum of Squares ν Mean Squares F-statistic p-value

Between SSB = 584 5 MSB = 117 0.6343 0.6736
Within SSW = 142478 774 MSW = 184
Total SST = 143061 779 MST = 183

Table 7.2: The analysis of variance table for the NCAA 2009 Football data associated
with Example 7.3. The large p-value indicates that there is no statistically significant
difference among the six conferences in terms of points scored per game.

same in each sub-population. In other words, the populations are homoge-
neous except for the additive group effect.

This can be symbolized as additive effect

Xi,j ∼ N (µj ,σ
2)

Here, Xi,j is the ith measure in Group j, and µj is the population mean of
Group j.

Normality: The first assumption is that of Normality: The measurements
within each sub-population is distributed Normally. This assumption can
be tested using either graphical or numeric means. The graphical test per-
formed is often the Quantile-Quantile plot. Q-Q plot

The Quantile-Quantile plot, also known as the Q-Q plot, graphs the
observed quantiles of the data against the hypothesized quantiles (of the Nor-
mal distribution). If the data are distributed Normally, then the Q-Q plot will sample v. population

observed v. expectedconsist of points perfectly lined up along the diagonal. No real data will line
up perfectly along the diagonal; Normally distributed data should be close,
however.

How ‘close’ is close? That is a very good question, for which there is no
absolute answer. This lack of an answer leads many to shun graphical means eschew
and solely use numerical methods for determining Normality. However, I
generally avoid numerical tests as they are only powerful for detecting lack-
of-Normality when the sample size is large, which is when the Normality
assumption is least needed.

When looking at the Q-Q plots, there are two things to keep in mind:
First, concern yourself more about systematic patterns than about random
fluctuations. Second, worry more about deviations in the center half of the
plot than near the tails. Tails are highly variable by their very nature, so variability
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Figure 7.3: Quantile-Quantile plots of two non-Normally distributed data against the
Normal distribution. The top Q-Q plot indicates severe right-skew; the bottom, severe
left-skew.

it is easy to have large deviations in the tails even when the distribution is
Normal.

Figure 7.3 contains two examples of Q-Q plots that indicate severe de-
viation from Normality. The top plot indicates severe right-skew; the bottom
plot, severe left skew. In both instances, the severity of the violation indicates
that the analysis of variance model you fit is inappropriate for the data.
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Figure 7.4: Quantile-Quantile plots of two Normally distributed sets of data: top, n = 10;
bottom, n = 1000. Take note of the variability.

In contrast, Figure 7.4 shows two Q-Q plots of two sets of data that
are distributed Normally. The top has a sample size of n = 1000; the bottom,
n = 10. Note two things: First, the variability is much greater in the tails than
in the center. Second, smaller sample sizes will produce Q-Q plots which
are not necessarily close to the diagonal line even when they come from a
Normal distribution.
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Figure 7.5: Quantile-Quantile plots of the team scores in the six conferences. There does
not appear to be any systematic deviation from the diagonal lines in any of the plots.

Remember, the assumption is that each sub-population is distributed
Normally. As such, you need to perform the test on each group. In R, let us
parse the scores of the Pac-10 using

scorePAC10 = score[conference=="Pac-10"]

With that, the command to produce a Q-Q plot is

qqnorm(scorePAC10)

The Q-Q plots for each of the six conferences are provided in Figure 7.5. Note
that none of the six are perfectly Normal, but there does not appear to be any
systematic deviation from the diagonal line.
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Alternatively, we can use numerical methods to test the Normality of
the residuals. Two popular tests are the Kolmogorov-Smirnov test (Massey
1951) and the Shapiro-Wilk test (1965). The K-S test is a general test that Shapiro-Wilk test
compares two specified distributions; the Shapiro-Wilk test is a custom-made
test of Normality. As such, if you must use a numerical measure of Normality,
this is the one I recommend.

Again, remember that the assumption is that the measurements in
each sub-population are distributed Normal. As such, you need to perform
the test on each group. Thus, the R command to use (for the Pac-10) would
be

shapiro.test(scorePAC10)

Performing the Shapiro-Wilk test gives us p-values of ACC, 0.09; Big East,
0.21; Big Ten, 0.63; Big 12, 0.02; Pac-10, 0.09; and SEC, 0.04. Note that two
of the conference tests fail at the α = 0.05 level. However, remember the
discussion about multiple testing at the beginning of this chapter (v.s., Sec-
tion 7.5). Using the Bonferroni correction indicates that none of the groups
are sufficiently non-Normal to cause concern (compare the p-values with
α/6 = 0.00833). Bonferroni

Equal-Variance: The second assumption we need to test is that of equal
variances across the groups. As with the Normality tests, there are graph-
ical tests and numerical tests. The graphical test of choice is the box-and-
whiskers plot (Figure 7.2). Looking at the box-and-whiskers plot, we are not
struck by any conference having much more (or less) spread than any other.
In fact, the six conferences look quite similar in terms of distributions (in-
cluding spread).

The numerical tests include the F-test (useful only for two groups)
and the Bartlett test (1937). Performing the Bartlett test indicates that the Bartlett test
variances across the six groups are not statistically different (K2 = 8.304,ν =
5,p = 0.1403). Thus, we fail to reject the null hypothesis of different vari-
ances and conclude that the model and data do not violate the equal-variance
assumption. equal-variances

In R, the command is

bartlett.test(score ∼ conference, data=fb)

The tilde (‘∼’) is the character that separates the dependent variable (score)
from the independent variable/grouping variable (conference). This one formula
line performs the Bartlett test comparing all six groups. As it performs a
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single test, there is no need to adjust the p-values using the Bonferroni ad-
justment.

A second (and frequently better) test to run is the Fligner-Killeen test.
This test is superior to the Bartlett test as it does not require the underly-Fligner-Killeen test
ing distribution to be Normal. As such, if the Shapiro-Wilk test (v.s., Section
7.2.1) is in the grey region, it will not affect this test of equal variances. Ac-
cording to the Fligner-Killeen test, there is also no compelling reason to reject
the null hypothesis of equal variances (X2 = 9.4431,ν = 5,p = 0.093).

In R, the command is

fligner.test(score ∼ conference, data=fb)

Thus, we can conclude that the assumptions of analysis of variance are not
violated here. As such, we can be confident in the results of the analysis of
variance test: We conclude that there is no statistically significant difference
in terms of points scored among the six major NCAA conferences in 2009
(F = 0.6343,νn = 5,νd = 774,p = 0.6736).

Note: Again, this is equivalent to concluding that the grouping variable
and the dependent variable are independent.independent

7.3: Non-Parametric Means Tests I

Let us perform the analysis of variance procedure for a different hypothesis
and a different set of data.

Example 7.4: Last week, a professor I know made the statement that Africa
is more poor (has a lower average GDP per capita) than each of the other
regions of the world. This seems to be the common wisdom. However, it is
true? Does Africa indeed have a significantly lower GDP per capita than the
rest of the world?

Solution: To answer this question, one could perform multiple t-tests (or
Mann-Whitney tests), suitably adjusting for multiple tests using the Bonfer-
roni correction. Alternatively, one can use analysis of variance.Bonferroni

Using ANOVA, the first step is to load the data set into memory so that
we can perform analysis on it: read.csv. Second, let us attach the data so
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Source SSx ν MSx F p − value

Between 1.34× 1010 5 2.68× 109 13.154 � 0.0001
Within 3.53× 1010 173 2.04× 108

Total 4.87× 1010 178 2.74× 108

Table 7.3: The analysis of variance table produced from the gdpcap data being fit by the
model explaining the State’s GDP per capita by the world region. Note that the p-value is
much less than our usual α = 0.05. As such, we are tempted to reject the null hypothesis
based on this test.

that we can avoid the ‘$’ notation: attach. Next, let us perform the analysis
of variance procedure on the data: aov(gdpcap∼region). Finally, we sum-
marize the results: summary. From this, we have the ANOVA table in Table
7.3.

Note that the p-value is much less than our usual α-level of α = 0.05. p-value
From this, we would like to conclude that there is a statistically significant
different among the six world regions — at least one of the six regions is
difference with respect to GDP per capita than the others.

Let us check the assumptions of the analysis of variance procedure. assumption
First, a side-by-side box-and-whiskers plot of the data: Figure 7.6 compares
the box-and-whiskers plots of the six regions of the world. Recall that we
need to test for Normality and for equal variances across the six regions. The
box-and-whiskers plot suggests both a lack of Normality and a lack of equal
variances across the six world regions. The vast number of outliers (signified
by solid dots) is not consistent with the assumption of Normality.

The asymmetry in several of the regions (Africa, Eastern, and Islamic)
is also inconsistent with the assumption of Normality. Finally, the spread skew
of the Eastern region is much larger than that of the Africa region. From
this, we must conclude that the two assumptions of the analysis of variance
procedure are violated in this data and model.

If we feel more comfortable with numerical tests, then we can use the
Shapiro-Wilk test of Normality and the Fligner-Killeen test of equal vari-
ances. The Shapiro-Wilk test indicates severe departure from Normality:
Africa has a p-value � 0.0001; Eastern, p = 0.0007; Islamic, p � 0.0001;
Latin America, p = 0.49; Other, p = 0.002; and Western, p = 0.014. The
Fligner-Killeen test indicates that the variances are not equal across the six
regions (X2 = 98.84,ν = 5,p � 0.0001). From these tests, we can conclude p < α→ fail
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Figure 7.6: A box-and-whiskers plot of the GDPs per capita for each of the six regions.
Note the presence of many outliers and the lack of symmetry in the plots — both indicators
of lack of Normality.

that the analysis of variance procedure is not appropriate for this model and
data. �

What do we do to answer the original question? We have two options. First,
we can transform the data so that the assumptions are not violated (v.i.,
Chapter 14). Second, we can perform a non-parametric method, which I
do here.

7.3.1 Another Rank-Sum Test Recall that in Chapters 5 and 6 we dis-
cussed two non-parametric methods that allow us to statistically compare the
mean of one population to a hypothesized mean (Wilcoxon test) and to sta-
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tistically compare the means of two populations (Mann-Whitney test). The
idea behind both tests was to rank the data, count the ranks above zero or
the ranks corresponding to one group, then compare that test statistic to a
distribution to get the p-value. The Kruskal-Wallis rank-sum test (1952) uses
the same idea. However, as there are L > 2 groups instead of 1 or 2, the
calculation is more difficult.

The assumption of the Kruskal-Wallis test is that each group has the
same distribution except for the mean. This assumption is less restrictive
than that of the analysis of variance procedure which required the additional
assumption of Normality. As such, the Kruskal-Wallis test is more general, it Kruskal-Wallis test
is also less powerful — it fails to reject too often. As it is less powerful, we
will want to use analysis of variance when possible. power

The Kruskal-Wallis test is also robust to violations of its assumptions.
This means that even when the groups do not have the same distribution, we
can use the Kruskal-Wallis test as long as the differences are not “too big”
and as long as we are not “slaves to α.”

Performing the Kruskal-Wallis test in R is quite easy. If our analysis of
variance command was ANOVA

aov(gdpcap ∼ region)

then, our Kruskal-Wallis test command is

kruskal.test(gdpcap ∼ region)

Using this command, we can conclude that the six world regions are not the
same with respect to average GDP per capita (X2 = 79.96,ν = 5,p� 0.0001).
While this is the same conclusion as that of the analysis of variance test, we p-value
are more confident in these conclusions as they are not based on the faulty
assumption of Normality.

Note: Both tests assume the distributions of the sub-populations are the
same except for the center. This is not supported by our tests. However,
the Kruskal-Wallis test is still better for this data than the analysis of
variance test because it does not make the additional faulty assumption
of Normality.

Note: The Kruskal-Wallis test is a non-parametric test. As such, it has non-parametric test
less power than the analysis of variance test. This means that it will fail to
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reject a false null hypothesis more often than will the analysis of variance
test; that is, the Type II Error rate is higher. Here, the null hypothesis was
rejected. This increases our confidence that the null hypothesis should be
rejected.
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7.4: Non-Parametric Means Tests II*

In Section 5.6 (page 122), we introduced the permutation test. In Section 6.5
(page 154), we expanded it to two groups. The logic behind the permutation
test is that the measurements in each group come from the same distribution permutation test
under the null hypothesis. Thus, permuting the observed values amongst
the groups changes nothing. This idea extends to more than two groups.
However, because the number of permutations becomes large quickly, the
randomization test version is usually used. randomization test

The function to use, permKS(), is from the same package as before
(perm).

Note: As an aside, the “KS” stands for “k-sample,” just as the “TS” from
the previous chapter stands for “two-sample.”

This function requires two slots: the measurement variable and the
grouping variable. Thus, a command to perform a randomization test on the
rice dataset is just

permKS(yield,variety)

This gives the following output:

K-Sample Exact Permutation Test Estimated by Monte Carlo

data: yield and variety
p-value = 0.006

p-value estimated from 999 Monte Carlo replications
99 percent confidence interval on p-value:
0.001080589 0.014099183

As usual, the null hypothesis is that the four groups have the same mean. null hypothesis
The p-value above is estimated to be p = 0.006. While it may be tempting to
interpret the confidence interval as a confidence interval for the difference
in mean yields, it is not. It is a 99% confidence interval for the p-value. The
output tells us that we are 99% confident that the true p-value is between
0.001 and 0.014. As this interval does not contain values above the usual
α = 0.05, we can conclude that the true p-value is less than α = 0.05.

The analysis above used the default estimation method, the exact Monte
Carlo method. We can specify that the function use that method, or we can
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specify the method be based on the central limit theorem for permutations.
These two lines do these two methods, respectively.

permKS(yield,variety, method="exact.mc")

permKS(yield,variety, method="pclt")

The method based on the central limit theorem for permutations provides
just the estimated p-value, not a confidence interval for it.

Using a permutation test on the GDPs per capita across the six world
regions gives output

K-Sample Exact Permutation Test Estimated by Monte Carlo

data: gdpcap and region
p-value = 0.001

p-value estimated from 999 Monte Carlo replications
99 percent confidence interval on p-value:
0.000000000 0.005289582

Again, as the 99% confidence interval for the p-value is entirely less than
our usual α = 0.05, we firmly reject the null hypothesis that the regions all
have the same average GDP per capita in favor of at least one differs from the
others.

7.5: Post-Hoc Testing

Thus far, we have only been able to test whether several populations have
different means based on the samples measured. The test we should use
depends on whether and which assumptions are met. If the populations are
Normally distributed and have the same variance, we use the analysis of vari-
ance test. If the populations have the same distribution except for the mean,
we use the Kruskal-Wallis test. If none of these assumptions are met, we use
the permutation test.

However, we often want to know more than just that there is a dif-know more
ference. We want to know which group is different from the others. For
instance, Which rice variety has the significantly different yield (see Example
7.2) or Does Africa have a lower GDP per capita than the other regions (see
Example 7.4)
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Our temptation is to perform pairwise t-tests (or Mann-Whitney tests
or permutation tests) on all possible pairs and use the Bonferroni adjustment
of Section 7.1 to correct the p-values for the experiment-wise error rate. How-
ever, the Bonferroni adjustment is very conservative; that is, it rejects less
often than it should. As such, it is not the best answer.

Figure 7.7: Sir Ronald A.
Fisher, FRS

Ronald Fisher, in the early 20th Century,
hypothesized that if the analysis of variance test
rejected the null hypothesis of no difference, then
the follow-up tests would not have to be adjusted pairwise tests
— they were “protected” tests.

Further analysis showed that Fisher was
not entirely correct (one of the few times). How-
ever, his non-adjustment produced experiment-
wise error rates closer to α than did the Bonfer-
roni correction. Regardless, it was still not good
enough for Fisher (or the many who followed). To-
day, solving this problem of an inflated Type I Er-
ror rate is a rich area of statistical research.

7.5.1 Fisher’s LSD Test One of the earliest adjustments to the Bonferroni
method was created by Ronald A. Fisher himself, one of the statistical lumi-
naries of the 20th Century. The Least Significant Difference test (Fisher 1948) LSD test
attempts to protect the experiment error rate by simultaneously performing
all t-tests at once, but using a common variance measure (the MSW). Doing
this allows us to calculate a least difference (LSD) corresponding to signifi-
cantly different groups; that is, if two group means differ by at least the LSD
then the group means are significantly different. significant difference

That a single number is produced and that this number corresponds to
a minimum distance between non-different groups are the strengths of this
test. Unfortunately, of the multiple comparison tests we discuss here, it is
the least protective of the experiment-wise error rate. protection

Fisher determined that for two groups to be significantly different,
their difference must be at least

LSD := tα/2

√
2 ·MSW

n

Here, tα/2 has degrees of freedom equal to that of the MSW, L(n−1), where L
is the number of groups and n is the number of observations in each group.
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Thus, for the Rice Yield example (7.2), assuming α = 0.05, with MSW
= 4156.31, L = 4, and n = 4, we have

LSD = 2.178813

√
2 · 4156.31

4
= 99.33

Thus, when two means differ by 99.33 we are 95% confident that the two
populations have statistically different means. Referring to the means we cal-
culated in Example 7.2, we see that Variety D is significantly different from
the other three varieties, but that none of the other three are significantly
different from each other.

Note: We can get the same results using the R function LSD.test() from
the agricolae package. Its first parameter is the analysis of varianceagricolae
model; the second, the name of the grouping variable ("variety").
Thus, the above analysis is done using the command

print( LSD.test(mod, "variety") )

Note: While it is true that this procedure does not protect the experiment-
wise error rate as well as the following tests, it does a good enough jobexperiment-wise

error rate if you have already rejected the null hypothesis that all of the means are
equal (Carmer and Swanson 1973).

Figure 7.8: John W. Tukey,
ForMemRS

7.5.2 Tukey’s Range Test John W. Tukey
(Tukey 1949, Kramer 1956) improved upon
Fisher’s LSD test above by using a different mea-
sure of variance. Whereas Fisher used the vari-
ance, Tukey used an adjusted variance corre-
sponding to a different distribution.

Tukey’s Range Test test statistic, a.k.a. the
Honestly Significant Difference (HSD) test statis-
tic, is

W = qα(t,ν)

√
MSW
n

Here, qα(t,ν) is the critical value corresponding to
the distribution named the “Studentized Range distribution.”Studentized Range
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An advantage of the HSD procedure is that it also provides a sin-
gle number with which we can compare differences in sample means as did
Fisher’s LSD test. A second advantage is that Tukey’s HSD test controls the
experiment-wise error rate better than does the LSD test.

A disadvantage is that Tukey’s HSD test uses a different distribution,
one that is only ‘well-known’ in this context. For those using tables to de- Studentized Range
termine the appropriate critical values, this matters; for the rest of us using
computers, it does not. Except for this expense of calculation, the HSD test
is superior to the LSD in all ways.

According to Tukey’s HSD procedure, the “honestly” significant dif-
ference for our rice example is

W = 4.19866

√
4156.312

4
= 135.3427

This means that there needs to be a difference of 135.3427 between two
means before they are considered significantly different. In the rice example,
we see that the yield of Variety D is significantly better than that of Varieties
B and C, but it is not significantly better than Variety A.

Note: We can get these results using R’s TukeyHSD() function. For the
above analysis, the command to run is TukeyHSD(mod). This command
gives a table of differences in the means. The p-value column (p adj)
gives the p-value associated with the difference in means against the null
hypothesis that the means are not different. Thus, a p-value less than α
indicates the means are significantly different.

This function also includes a function that plots the confidence
intervals for the differences in means between each pair of levels. Just
surround the above function call with a plot function. That is, run this
line plot(TukeyHSD(mod))

Note: In addition to the TukeyHSD() function, we can get the same re-
sults using the HSD.test() function from the agricolae package. It
requires two parameters, however. Its first parameter is the analysis of
variance model; the second, the name of the grouping variable (here, ANOVA
"variety").

Thus, the line of code to run to perform Tukey’s HSD test is just
print( HSD.test(mod, "variety") ). Note that this function gives a
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lot more information than the TukeyHSD() function. It, alas, does not
have a plotting option.

Note: This procedure is also based on calculating a single number that
serves as the difference between statistically different and not. Other pro-
cedures, like Duncan’s Multiple Range Test, create test statistics based on
how far apart the means are in terms of ranks. Thus, Variety B and Vari-
ety C (adjacent ranks) would have a different “HSD” than would Variety
B and Variety D (three ranks apart) when using Duncan’s test.

Note: Other parametric multiple testing procedures used in R are the
Student-Newman-Keuls (SNK) test (SNK.test), Duncan’s new multiple
range test (duncan.test), and the Waller-Duncan test (waller.test),
among many others. In short, if you read about a multiple testing proce-
dure, it is probably already a function in R.

Figure 7.9: Bill Kruskal

7.5.3 Kruskal’s Multiple Range Test Tukey’s
HSD procedure, as well as Fisher’s LSD procedure
and most other multiple testing procedures (in-
cluding Duncan’s test and Scheffé’s test) are based
on the same assumptions as the analysis of vari-
ance procedure. Thus, if you cannot use anal-ANOVA
ysis of variance, these tests will not work. You
will have to use a non-parametric multiple-testing
method such as the Kruskal method (Conover
1999).

Performing the Kruskal multiple compari-
son’s method in R is simple. The command for the
rice data would be

kruskal(gdpcap,region)

Note that the first parameter is the measurement and the second is the group-
ing variable (a.k.a. the treatment). Performing this test on the gdpcap data
gives us that the Western Region has a significantly higher GDP per capita
than the other regions, Africa has a lower GDP per capita than the other re-
gions, and the rest are not significantly different in terms of GDP per capita.

Note: The kruskal() function also requires the agricolae package.
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7.6: Further Examples

To further illustrate some of these processes, this section provides several
additional examples.

Example 7.5: This example comes from Fisher’s original introduction to the
analysis of variance procedure (Fisher 1925). On Page 195, he presents data
and asks the following question:

In an experiment on the accuracy of counting soil bacteria, a soil
sample was divided into four parallel samples, and from each of
these after dilution seven plates were inoculated. The number
of colonies on each plate is shown below. Do the results from
the four samples agree within the limits of random sampling? In
other words, is the whole set of 28 values homogeneous, or is
there any perceptible intraclass correlation?

In other words, does the mean number of colonies differ across the four par-
allel samples? Let us answer his question.

Solution: The datafile fisher38 contains the data. The two variables are
the number of colonies observed and the sample number. We would like to
test if the mean number of colonies observed is the same for the four popula-
tions. To do this, we would like to use the analysis of variance procedure as it
is more powerful than our other options. This test makes two assumptions:
the colony count in each population is Normally distributed and the variance
of the colony count in each population is the same.

Let us use the Fligner-Killeen test to determine if the second assump-
tion is reasonable. According to that test, the assumption is reasonable (p =
0.8469). The Shapiro-Wilk test also indicates the Normality assumption is
reasonable (pmin = 0.062). Thus, as the assumptions are met, we can use the
analysis of variance test.

According to the analysis of variance test, there is no significant ev-
idence that the average number of colonies varies across the four samples
(p = 0.669). In effect, the number of colonies is independent of the sample
number. The box-and-whiskers plot supports this conclusion (Figure 7.10).

This conclusion makes perfect sense knowing the source of the data:
Fisher pulled the four samples from the same soil sample.
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Figure 7.10: A box-and-whiskers plot of the colony count across the four samples. Note
that the medial lines vary wildly, but so too do the actual measurements.

Note: One can see that the median (mean) lines vary wildly, there is also
great variation in the measurements in each group. It is this latter fact
that means we cannot conclude the means are different. This is an impor-
tant point! We do not conclude the means are the same. We just cannot
detect a difference in the means.

�

Example 7.6: At its most general, a biome is a region with similar climactic
conditions. There are many ways of categorizing the Earth’s land into biomes.
One common method was proposed by the World Wide Fund for Nature
(WWF). The WWF biome scheme consists of 14 different biomes. These range
from the Mangrove biome (subtropical and tropical land inundated by salt
water) and Taiga (subarctic, humid land), to Tundra (artic land) and Xeric
shrubland (temperate to tropical arid land).

Fires are expensive, both their fighting and their prevention. To re-
duce resources spent, many jurisdictions are thinking about taking the biome
into consideration when planning future fires. It makes sense that different
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biomes would have different fire probabilities, but do they? Furthermore,
which biomes are associated with faster fire return intervals?

To answer these questions, a researcher randomly sampled 30 areas in
the United States. These 30 samples consisted of five biomes with mean fire
return intervals ranging from three years to 1000 years.

Let us answer the questions.

Solution: The datafile biome2 contains the data. The two variables of inter-
est are the biome and the mean fire return interval (mfri). We would like to
test if the average mfri differs across the five biomes and (if so) which has the
lowest mean time between fires (mfri). To do this, we would like to use the
analysis of variance procedure as it is more powerful than our other options.
This test makes two assumptions: the mean fire return interval in each biome
(population) is Normally distributed and the variance of the mean fire return
intervals in each biome (population) is the same.

Let us use the Fligner-Killeen test to determine if the second assump-
tion is reasonable. According to that test, the assumption is not reasonable
(p = 0.0019 < 0.05 = α). Because the data fails this test, there is no need
to test the Normality assumption; both the analysis of variance test and the
Kruskal-Wallis test requires that the distributions be identical except for the
medians. Such is not the case here. As such, we will use the permutation
test.

According to the exact Monte Carlo permutation test, there is strong
evidence that the average mean fire return rate varies across the five biomes
(p = 0.001).

At least one of the five is not like the others, but which? There is
no simple one-line test to answer this question when the equal-variance as-
sumption is not met. Thus, we will need to perform pairwise permutation
tests and adjust the p-values using the Bonferroni adjustment. This is not
perfect, but it is the best we have. From those

(5
2
)

= 10 tests, we have that
the subtropical rainforest (STR) biome significantly differs from all others in
terms of the average mean fire return interval. We cannot, however, detect
a difference among the other four biomes. The box-and-whiskers plot only
partially supports this conclusion (Figure 7.11).

Note: In effect, we can only conclude that the subtropical rainforest biome
differs in the mean fire return interval. We cannot conclude that the other
four biomes have the same average mean fire return interval. Looking at
the box-and-whiskers plot (Figure 7.11) illustrates this. While it looks as
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Figure 7.11: A box-and-whiskers plot of the mean fire return interval across the five
biomes. Note that it appears as though the TS and XER biomes differ from the TBF
and TCF biomes. However, the permutation test was not powerful enough to detect the
difference.

though the xeric shrubland (XER) and the tree savanna (TS) have simi-
lar average mean fire return intervals that differ greatly from those of the
temperate broadleaf and coniferous forests (TBF and TCF), we cannot de-
tect a difference using this method.

An Alternative to the Permutation Test* This shows that permutation tests
are of low power. It would have been better to transform the data so that we
could have used the analysis of variance test. Perhaps a logarithm transfor-
mation on the mean fire return intervals would make the population vari-
ances sufficiently similar to allow us to avoid using the permutation tests.

I leave it as an exercise for you to transform all mean fire return in-
tervals with the logarithm function, then determine if the variances are suf-
ficiently the same to pass the Fligner-Killeen test (it is). The logarithm trans-
form also produces log-mean fire return intervals that are sufficiently Nor-
mal. Thus, we can use the analysis of variance test on the logged mean fire
return interval values.
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Here is the code to accomplish this analysis:

lmfri = log(mfri)

fligner.test(lmfri~biome)
mod2 = aov(lmfri~biome)
shapiro.test( residuals(mod2) )

summary(mod2)
TukeyHSD(mod2)

The first line performs the logarithm transformation of the mean fire return
interval variable. The second line performs the Fligner-Killeen test. Since the
data passed this test, we fit it with the model and test the model’s residuals
for Normality. This is a quicker way to test the Normality assumption. We
could have performed five Shapiro-Wilk tests, one for each biome, but we
would have had to perform a Bonferroni adjustment. This way is faster and
better in terms of being less conservative.

This analysis shows that the temperate broadleaf and coniferous forests
are not significantly different in terms of their average mean fire return inter-
val and that the xeric shrubland and tree savanna biomes are not significantly
different in their average mean fire return interval. All other pairs of biomes
do significantly differ in their average mean fire return intervals. The last
two lines perform the hypothesis tests. The first tests if there is a difference
among the five biomes. The second determines which are different.

This conclusion feels better, as it seems to better agree with the box-
and-whiskers plot (Figure 7.11).

�

Example 7.7: The Cold War ran from the late 1940s until the early 1990s.
During that period, Europe was divided into three groups: Those states who
were members of NATO, those who were members of the Warsaw Pact, and
those who were members of neither. NATO members were allied with the
United States; Warsaw Pact members; the Soviet Union. The neutral states
were officially non-allied. After the fall of the Soviet Union in 1992, the
Warsaw Pact ceased to exist and several new states came into being.

In 2010, the European Union polled citizens in its member states and
asked them if they thought the United States was, overall, a positive force in
the world or a negative force in the world. A researcher thought that there
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may be lingering dislike of the United States based on the Cold War divisions,
so she decided to test if there was a significant difference in the perception
of the United States across the three alliance types named above.

Solution: To test this, the data must be properly divided into the three
groups, and the three groups must be delineated, especially as there are many
new countries that did not exist during the Cold War. The rule is to place the
current country based on what it was and where it was during the Cold War.
It is also to ignore Germany. With those rules, there were 11 European NATO
members: Belgium, Denmark, France, Greece, Italy, Luxembourg, Portugal,
The Netherlands, Turkey, the United Kingdom, and Spain. There were nine
European Warsaw Pact members: Bulgaria, Czech Republic, Estonia, Hun-
gary, Latvia, Lithuania, Poland, Romania, and Slovakia. There were eight
neutral countries: Austria, Croatia, Cyprus, Finland, Ireland, Malta, Slove-
nia, and Sweden.

We will also use the proportion of the population viewing the United
States as having an overall negative force in the world as our dependent vari-
able. The following three lines puts this data into R:

NATO = c(0.70, 0.48, 0.67, 0.88, 0.38, 0.66, 0.61, 0.50,
0.76, 0.53, 0.54)

WSWP = c(0.39, 0.30, 0.43, 0.43, 0.40, 0.28, 0.38, 0.22,
0.46)

NEUT = c(0.55, 0.32, 0.84, 0.60, 0.59, 0.65, 0.67, 0.62)

We would like to use the analysis of variance test as it is the most powerful
test we have. It assumes the measurements are Normally distributed in the
populations and that the measurements have equal variances in the popula-
tions. Here, we test the first:

shapiro.test(NATO)
shapiro.test(WSWP)
shapiro.test(NEUT)

All three groups pass the Normality test. We now test the equal-variance
assumption. Here is one way:

fligner.test( list(NATO,WSWP,NEUT) )

The data also pass the Fligner-Killeen test. Thus, we can perform the analysis
of variance test.
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Figure 7.12: A box-and-whiskers plot of the perception that the United States has a net
negative effect on the world across the three Cold War alliances. Note that there appears
to be no difference between the NATO group and the neutral group, and that the Warsaw
Pact group has a much less negative perception of the United States.

This gets the data in the right format and performs the analysis of variance
test:

Negative = c(NATO,WSWP,NEUT)
Alliance = c(rep("NATO",11), rep("WSWP",9), rep("NEUT",8))
Alliance = as.factor(Alliance)

mod = aov( Negative~Alliance )
summary(mod)

According to the analysis of variance test, the three means are not the same
(p = 0.00034). But, which is different? Are there lingering Cold War effects?
Do the former members of the Warsaw Pact see the United States much more
negatively than the members of the former NATO?

TukeyHSD(mod)

According to Tukey’s HSD test, the answers are the Warsaw Pact, perhaps,
and no. While there is no detectable difference in how NATO members and
neutral members see the United States, there is a significant difference in
how the former Warsaw Pact countries see the US. The former Cold War en-
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emies have a significantly less negative view of the US than do the other two
alliance categories. This conclusion is supported by the bow-and-whiskers
plot (Figure 7.12). �

7.7: Conclusion

In this chapter, we discovered many methods of comparing the centers of
more than two groups. The methods were either parametric (analysis of
variance) or non-parametric (Kruskal-Wallis, and permutation). Before we
discussed the tests, we explored the multiple testing issue. The first (and
easiest) correction method is the Bonferroni adjustment. Its drawback is that
it is extremely conservative; it fails to reject more often than it should.

We then discussed several adjustments and improvements to the Bon-
ferroni method: Fisher’s LSD method, Tukey’s HSD method, and Kruskal’s
method. The first two (along with the several others mentioned in the text)
are based on the same assumptions as the analysis of variance procedure.
Thus, if you cannot use this procedure, you should not use these multiple
testing methods. The third method is based on the Kruskal-Wallis non-
parametric test. As such, it makes the same assumptions of that test and
shares its strengths and weaknesses.
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7.8: End of Chapter Materials

7.8.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Packages:

agricolae This package includes many multiple-testing functions, in addi-
tion to functions related to agricultural research.

Statistics:

aov(formula) This performs the analysis of variance procedure on the data
using the offered formula. If you do not attach the data, then you will
add a data= parameter to this function call. Thus, for the rice data, the
command that performs analysis of variance would be

aov(yield ∼ variety, data=rice)

Note that the dependent variable is to the left of the tilde, and the
grouping variable is (or grouping variables are) to the right.

As the aov function returns a lot of information, you will want to store
the results in a variable and then use summary() to summarize the data.
You should also save the aov results in a variable as many multiple
comparisons test require it as a parameter.

bartlett.test(formula) The Bartlett test determines if the groups have the
same variance.

fligner.test(formula) The Fligner-Killeen test determines if the groups have
the same variance. This test is most robust against departures from
Normality (Conover, Johnson, and Johnson 1981). As such, it tests the
equal-variance assumption without the results being dirtied by varia-
tions from Normality.

HSD.test(model, g) Tukey’s Honestly Significant Difference test also deter-
mine which of the groups is significantly different from the others. It
is conservative, although not as conservative as Fisher’s LSD test. This
test requires the agricolae package to be loaded, via library(agricolae).
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kruskal.test(formula) This performs the Kruskal-Wallis test, which is the
non-parametric analogue of the analysis of variance procedure. As with
aov, the kruskal.test function takes an optional data= parameter.
Thus, if we had not attached the gdpcap data, we would use

kruskal.test(gdpcap ∼ region, data=gdp)

to perform the Kruskal-Wallis test.

kruskal(y,x) The Kruskal method performs multiple testing of the several
means among the groups. The measurements are y, and the groups
are x. This test makes the same assumptions of the Kruskal-Wallis test
(above). This test requires the agricolae package to be loaded, via
library(agricolae).

ks.test(x,p) The Kolmogorov-Smirnov test calculates the ‘distance’ between
the supplied data and the stated distribution (or a second data set).

LSD.test(model,g) Fisher’s Least Significant Difference post hoc test deter-
mines which of the groups is significantly different from the others
in terms of the measurements. It requires that you have already per-
formed the analysis of variance procedure on the data and that you
supply the name of the grouping variable. The LSD test is more conser-
vative than Tukey’s HSD test, but not as conservative as the Bonferroni
adjustment. This test requires the agricolae package to be loaded,
via library(agricolae).

shapiro.test(x) The Shapiro-Wilk test is used to quantify the degree of Nor-
mality in a group of data. The null hypothesis is that the data is Nor-
mally distributed. Thus, a p-value greater than α = 0.05 signifies that
there is not enough evidence to conclude the data is not Normally dis-
tributed.

TukeyHSD(model) Tukey’s Honestly Significant Difference test also deter-
mine which of the groups is significantly different from the others. It is
conservative, although not as conservative as Fisher’s LSD test.

Probability:

pf(x) The F distribution is the probability distribution tied to the analysis
of variance test. in R, to calculate the probability of observing a specific
value, x, from an F distribution with degrees of freedom df1 and df2,
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you would use pf(x, df1, df2, lower.tail=FALSE). The lower tail
parameter specifies that you want the probability of getting a value
more extreme than the x; the default is lower.tail=TRUE.

Graphics:

qqnorm(d) One of the graphical techniques used to determine normality of
residuals is the Q-Q Plot. In R, the qqplot function is actually a more
general tool that plots the quantiles of any two sets of numbers against
each other. The qqnorm is dedicated to plotting residuals against the
Normal distribution to determine Normality.

qqline(d) Unfortunately, the qqnorm() command does not add a reference
line to the quantile-quantile plot. To add this line, you will need the
qqline(d) command.

Programming:

library() Most analysis in R can be done using the basic functions. There
are times, however, when additional functionality is needed or desired.
Hundreds of statisticians and computer scientists have created pack-
ages of functions that extend the abilities of R. To use these packages,
one must both have them installed in their R folder and loaded into
memory. The former can be done with the command

utils:::menuInstallPkgs()

or through the provided menu:

Packages | Install Package(s)...

Once the package is in the R folder, you activate it using the library()
command.
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7.8.2 Exercises and Extensions This section offers suggestions on things
you can practice from this chapter. Save the scripts in your Chapter 7 folder.
For each of the following problems, please save the associated R script in the
chapter folder as ext0x.R, where x is the problem number.

Summary:

1. How is the analysis of variance procedure an extension of the two-
sample t-test? How is it different?

2. What are three characteristics of the F distribution? How many param-
eters does it take? What are those parameters?

3. What is the strength of the Bonferroni adjustment? What is the weak-
ness? Why did Fisher and Tukey develop other adjustment methods?

4. What does the R-function qp give?

5. Why should a researcher prefer the analysis of variance procedure over
the Kruskal-Wallis test? Why might a researcher still need to use the
Kruskal-Wallis test?

6. Why should one not use the Kruskal-Wallis test and Fisher’s LSD test?

Data:

7. The crime datafile consists of several variables. Those of interest to
this question are census9 (region of the US) and vcrime90 (the vio-
lent crime rate in 1990). Are the nine regions of the country the same
with respect to crime rate? If not, rank the regions from highest to
lowest according to statistically significant differences in violent crime
rate. Again, make sure you perform the appropriate checks of assump-
tions and that you answer the question appropriately and include ap-
propriate graphs to support your conclusions. Include an appropriate
box-and-whiskers plot.

8. Redo the previous problem using census4 in lieu of census9. The
new variable divides the country into just four regions. Again, make
sure you perform the appropriate checks of assumptions and that you
answer the question appropriately and include appropriate graphs to
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support your conclusions. Include an appropriate box-and-whiskers
plot.

9. Redo the previous problem using vcrime00, the violent crime rate
in 2000. Again, make sure you perform the appropriate checks of as-
sumptions and that you answer the question appropriately and include
appropriate graphs to support your conclusions. Include an appropri-
ate box-and-whiskers plot.

10. According to the crime datafile, does the 1990 property crime rate
(pcrime90) differ across the four census regions? If so, which region
has the highest average property crime rate in 1990? Provide an appro-
priate graphic to illustrate your findings.

11. Redo the previous problem. This time, use the property crime rate in
2000 (pcrime00) in lieu of that in 1990.

12. The crime datafile also contains information about the use of the citi-
zen’s initiative during the 1990s (inituse). According to the data, do
the four census regions use the citizen’s initiative at a different rate? If
so, which region tends to use it most? Make sure you provide necessary
evidence, explanation, and graphics.

13. Continuing our use of the crime datafile, do the four census regions
have the same average level of conservatism (conserve)? If not, which
region is most conservative? Which region is least conservative? As
always, provide necessary evidence, explanation, and graphics.

14. According to the crime datafile, do the four census regions tend to
have the same proportion of time that the two branches of government
are held by the same party (unifGOVT)? As always, provide necessary
evidence, explanation, and graphics.

15. Again, according to the crime datafile, do the four census regions tend
to have the same level of professionalism in the state legislature, as
compared to that of the US Congress (profleg)? As always, provide
necessary evidence, explanation, and graphics.
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Monte Carlo:

16. One of the assumptions of the analysis of variance procedure is that the
several groups are Normally distributed. Let us see how much we can
relax that assumption. Create three variables with the same mean, vari-
ance, and distribution, but with that distribution being non-Normal.
Use Monte Carlo to determine if the p-values from the analysis of vari-
ance test are Uniformly distributed.
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7.8.3 Applied Research This section offers some applied research works
that are connected with the topics in this chapter.
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