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This chapter continues testing simple hypotheses con-
cerning the population mean. In Chapter 5, we introduced
tests and confidence intervals covering means of a sin-
gle population. In this chapter, we do the same, but for
the difference in means between two populations. Along
with Normality, the usual assumption is that the measure-
ments in each of the two groups are independent of each
other.

§ § §

The mayor of İstanbul decided that the average response
times for fire stations in the city were too long. A Rep-
resentative suggested a new GPS system. Unfortunately,
the GPS system cost several million Lira. Thus, the mayor
needs to know that it will work well enough to pay for it
out of tax income.

To fully test the effect of the GPS system, the mayor
randomly divided the 39 districts into two groups. He
rented the GPS system and had the fire stations in the
first group of 15 districts use it. The fire stations in the
remaining 24 districts continued using the old method.
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6.1: Two independent samples; equal variance

Let us assume that you have two categories of individuals. For each individ-
ual, you measure a specific characteristic and the group membership. This
can be as simple as measuring the height of several people to determine if
men or women are taller, or it can be as complex as measuring a latent vari-
able based on a variety of different measures on two different populations of
individuals. The key is that you have a single measurement, a group mem-
bership (male or female), and you want to compare the averages of the two
populations.

To solve this, we can make a few assumptions: The heights are inde-
pendent. The heights are distributed Normally in each category. The height
variance is the same in both populations. That is, we are assuming the two two populations
populations differ only in their means.1 In symbols, we assume:

Xi ∼ N
(
µx,σ

2
)

and Yi ∼ N
(
µy ,σ

2
)

Creating the test statistic follows the natural course. Since we want to test
for a difference in population means, we should use a test statistic based on
the difference in sample means. That leaves the question of the distribution.
From our assumption, we know

X ∼ N
(
µx,

σ2

nx

)
and Y ∼ N

(
µy ,

σ2

ny

)
Thus, the distribution of the difference in means is

X −Y ∼ N
(
µx −µy ,

σ2

nx
+
σ2

ny

)
Now, we have a test statistic and its distribution. If we know σ2, then the test population variance
statistic is

z =
x − y√
σ2

nx
+ σ2

ny

which, as expected, has a standard Normal distribution.

1Again, these assumptions must be tested.
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However, as before, knowing the population variance without know-
ing the population means is unrealistic. It is most likely that we will needunrealistic
to estimate the population variance with the sample variance, as we did in
Section 5.3. This estimation produces the test statistic

t =
x − y√
s2
p

nx
+ s2

p

ny

,

which is commonly written as

t =
x − y

sp
√

1
nx

+ 1
ny

(6.1)

Here, s2p is the estimated variance of the entire population, called the pooled
variance because you are pooling both samples together.pooled variance

Notice that this test statistic also has the basic form of all of the para-
metric test statistics in the previous chapter: a difference divided by its stan-
dard error. Here, since we are assuming that the populations have a common
variance, we are using a weighted average of the two sample variances, called
the pooled variance:

s2p :=
(nx − 1)s2x + (nY − 1)s2y

nx +ny − 2
(6.2)

To test the statistic, you need to know its degrees of freedom. In the previous
section, it was n − 1 for one group. Here, since there are two populations, it
is n− 2, which can be written as (nx − 1) + (ny − 1).

Example 6.1: You decide to test the hypothesis that men and women are the
same height (on average). To do this, you measure the heights of 10 men andresearch hypothesis
15 women. The measured heights for the men were 68, 71, 69, 70, 73, 72, 70,
67, 72, and 68 inches; for women, 63, 65, 65, 62, 68, 62, 63, 68, 65, 64, 65,
65, 70, 65, and 65 inches.

In this sample, the men had an average height of 70in, with a variance
of 4 in2. The women had an average height of 65in, with a variance of 5 in2.
Assuming the population height variances are equal, does the data supportequal variances
the hypothesis at the α = 0.05 level?
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Solution: First, let us clearly state the null and alternative hypotheses:

H0 : M ∼ N (µ,σ2), and

F ∼ N (µ,σ2)

HA : M ∼ N (µM ,σ
2), and

F ∼ N (µF ,σ
2), with µM , µF .

Next, we are given the necessary information. Let us substitute it into our
formulas (Eqns 6.1 and 6.2). First, the pooled variance:

s2p :=
(nM − 1)s2M + (nF − 1)s2F

nM +nF − 2

=
(9)4 + (14)5

23
≈ 4.6087, and

sp = 2.14679

Second, the test statistic

t =
m̄1 − f̄2

sp
√

1
nM

+ 1
nF

=
70− 65

2.14679
√

1
10 + 1

15

=
5

0.87642

≈ 5.70501

The number of degrees of freedom are ν = 10 + 15 − 2 = 23. Thus, from
the tables, the critical value is 2.0687. As our test statistic t = 5.70501 > test statistic
2.0687 = cv, we can reject the null hypothesis that men and women are the
same height, on average. Figure 6.1 indicates the same conclusion. �

Since we have a computer, we can actually go a bit farther. We can cal-
culate the p-value. Recall that the definition of the p-value is the probability p-value
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Figure 6.1: Plot of the null distribution in Example 6.1. Note that the test statistic (TS) is
located in the rejection region. As such, we reject the null hypothesis as being sufficiently
unlikely and conclude that the genders do not have the same heights.

of observing data this extreme or more so, given the null hypothesis is true.
In R, the code to calculate the p-value in this example is

2*pt(5.705, df=23, lower.tail=FALSE) (6.3)

This gives a p-value of approximately 8.263 × 10−6 = 0.000008263, which is
tiny compared to our usual α = 0.05. In fact, even if we had chosen α =
0.0001, we could still safely reject the null hypothesis that men and women
have the same average height. And, we did this based on just 25 data points.

In Code Snippet 6.3, we multiply the p-value by 2 because this is a
two-tailed test; that is, the null hypothesis only concerns equality. Also, thetwo-tailed test
R function, pt() returns the cumulative probability function of the t distri-
bution; that is, it returns P [T ≤ t]. In other words,CDF

pt(x) = P [T ≤ x]

This function is easier to remember if you remember that the ‘p’ stands for
cumulative ‘probability’.

In lieu of dealing with bare probability functions, we can use the full
power of our statistical environment to do the calculations for us. In general,
there are three steps to analysis: import the data, test the assumptions, and
test the hypothesis.
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Here are the three steps in R for this example’s data

male = c(68,71,69,70,73, 72,70,67,72,68)
female = c(63,65,65,62,68, 62,63,68,65,64, 65,65,70,65,65)

shapiro.test(male)
shapiro.test(female)

t.test(male,female, var.equal=TRUE)

The first two lines import the data into R, storing the heights of these males
into the male variable and the heights of these females into the female
variable. The second two lines test the assumption that the measurements
are Normally distributed in each group. The final line performs the t-test.
Note that the results of these lines are the same as for the discussion above:

Two Sample t-test

data: male and female
t = 5.705, df = 23, p-value = 8.263e-06
alternative hypothesis: true difference in means is not

equal to 0
95 percent confidence interval:
3.186982 6.813018

sample estimates:
mean of x mean of y

70 65

In addition to performing the test, we also have a 95% confidence in-
terval for the difference in the population averages: males are from 3.19 to confidence interval
6.81 inches taller than women, on average. How does the output tell us this?
Since male precedes female in the data line, we know the confidence inter-
val is for male−female.
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6.2: Two independent samples; unequal variance

Now, you may be asking, what happens if I am not sure that the variances
in the two populations are equal? As the previous formula was based on theunequal variances
assumption that the variances were equal, relaxing that requirement changes
the formula. Actually, the formula is much simpler and interpretable:

t =
x − y√
s2
x
nx

+ s2
y

ny

(6.4)

Notice that this formula also has the standard form of a t-test. The difference
is in the denominator.

Before we heave a sigh of relief and ask why we don’t always use For-
mula 6.4, referred to as Welch’s t-test (1947), we have to concern ourselves
with the degrees of freedom for the t-statistic. Here is where the complex-
ity arises. The current best approximate solution, the Welch-Satterthwaite
equation (Satterwaithe 1946; Welch 1947), is to approximate the degrees ofWelch-Satterthwaite
freedom with

ν =

(
s2
x
nx

+
s2
y

ny

)2

(s2
x /nx)

2

nx−1 + (s2
y /ny)

2

ny−1

(6.5)

Thankfully, you only have to tell the computer to use this form; you do not
have to calculate it yourself. However, you have to know to tell the computer.

Many statistical packages (including R, SPSS™and SAS™) provide the
p-values under the assumption that the variances are equal and without thatp-value
assumption. They will also give you p-values on the null hypothesis that the
variances are equal. However, it is actually much simpler than that.

If you use the t-test enough times, you will notice that when the pop-
ulation variances are equal, the t-test that assumes equal variances gives the
same answer as the t-test that does not, on average. When the population
variances are not equal, the unequal-variance t-test is the appropriate test.
In other words, you should always use the unequal-variance t-test (Formula
6.5) unless you are absolutely sure the variances are equal.certainty
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�Warning: Well, I should place a warning here. Remember, there are assumptions
underlying the t-test. The most important is that the measurements in the two
populations are Normally distributed. If that is not true (or close to being true),
then you should not use either t-test unless the sample size is ‘large enough.’ This
is a rather important assumption, as the next section demonstrates.

Furthermore, there is a very slight gain in power when using the equal power
variance test as opposed to the unequal variance test. But, the gain is slight and
disappears if the population variances are not equal.

Example 6.2: Let us return to Example 6.1. In that example, we assumed the
population variances were the same. Let us perform the same test, without
making this assumption.

Solution: The only change is in the fifth line. Here are the three steps in R:

male = c(68,71,69,70,73, 72,70,67,72,68)
female = c(63,65,65,62,68, 62,63,68,65,64, 65,65,70,65,65)

shapiro.test(male)
shapiro.test(female)

t.test(male,female)

The default for the t-test function is to not make the assumption of equal default
variances. The substantive results are the same as in Example 6.1. There
is significant evidence that heights differ between the genders (t = 5.84;ν =
20.91;p� 0.0001). In fact, we are 95% confident that men are between 3.22
and 6.78 inches taller than women, on average. Figure 6.2 illustrates this. confidence interval
Here is the t-test output from R:

Welch Two Sample t-test

data: male and female
t = 5.8387, df = 20.914, p-value = 8.667e-06
alternative hypothesis: true difference in means is not

equal to 0
95 percent confidence interval:
3.218677 6.781323

sample estimates:
mean of x mean of y

70 65
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Figure 6.2: A box-and-whiskers plot of the two groups of heights. Note that the male
heights appear to be significantly higher than female heights, which is what the t-test
indicated.

Note that the degrees of freedom is no longer an integer. This is due to the
Welch-Satterthwaite approximation of Formula 6.5. �

6.3: Testing the Assumption

As with the one-sample t-test, the assumption of the two-sample t-test has totwo-sample
do with Normality. The assumption is that the measurements in each group
came from a Normal distribution. Testing the assumption requires partition-
ing the measurements into the two groups and performing a Normality test
on each subset. This we did in Example 6.2 (although the measurements
were already partitioned).

Example 6.3: Using the football1 datafile, let us determine if the Big 12
scores more points on average than the SEC. This data comes from all regular
season games in 2009.

Solution: The dependent variable is the number of points scored in each
game (score). The grouping variable (independent variable) is the team’sgrouping variable
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conference.

As we wish to draw inferences on two population averages, we would
like to use the two-sample t-test. We would like this as it has higher power parametric test
than any non-parametric test — assuming its assumptions are met.

The assumption of the two-sample t-test is that the measurements in
each group came from a Normal distribution. Before we can test this, we Normality
need to partition the scores by conference. In R, I run

b12 = score[conference=="Big 12"]
sec = score[conference=="SEC"]

Now, I have two variables of scores. The first variable, b12, contains all game
scores of the Big 12 teams. The second variable, sec, contains all game scores
of the SEC teams. partition

With this, we merely perform a Shipiro-Wilk test on each of the two
variables: shapiro.test(b12) and shapiro.test(sec). These tests indi-
cate that this data violates the assumption of the t-test (pb = 0.01846; ps =
0.03925). As such, we will need to use some other test (Section 6.4). �

Note: The code to partition the scores by conference is good to know as
it is used frequently. Note the double equals inside the bracket. These testing equality
indicate you are testing the conference variable to determine which have
the value “Big 12”. This is where the partitioning is happening.

This is covered again in Example 6.5, below.

6.4: Non-Parametric Means Tests I

The tests of means (thus far) have all assumed that the underlying popu-
lations were distributed Normally. This assumption is never true, and the Normality
Central Limit Theorem does not save us unless the sample sizes are quite
large or the distributions are approximately Normal. So, what do we do if
the sample sizes are small and the samples are not sufficiently Normal? In
those cases, we can use non-parametric methods.

Non-parametric tests do make assumptions about the underlying dis- non-parametric tests
tribution, but those assumptions do not require a specific distribution. When
comparing two samples, the Mann-Whitney test (also known as the two-
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sample Wilcoxon test) requires that the two samples differ only in their mea-
sure of center.

6.4.1 Two-sample Mann-Whitney test Just as there is a two-sample t-
test used to compare means of two populations whose measures are Nor-
mally distributed, there is a non-paramteric alternative when the measure-
ments are not Normally distributed. It is called the two-sample Wilcoxon
test (or the Mann-Whitney test). The assumption of the Mann-Whitney test
is that the two samples are identically distributed, except for the center.

Example 6.4: Do democratic States have a higher external debt than auto-
cratic States? My friend asserts that autocratic States have a lower external
debt than democratic States. Thus, his stated hypothesis isresearch hypothesis

HA : µa < µd

Notice that this is the alternative hypothesis. The null hypothesis always in-
cludes the “no effect” position. As my friend stated autocracies have a lower
external debt, he is stating the alternative, µa < µd . Had he said “Autocracies
do not have a greater external debt,” his statement would be µa ≤ µd , which
includes the null position (µa = µd), and would be the null.

To test his hypothesis (actually, to test the null hypothesis), he selected
a random sample world States and measured their external debts (Table 6.1).
Assuming his sample is representative, does reality support his assertion?

Solution: The steps for the Mann-Whitney test are quite similar to those of
the one-sample Wilcoxon test (see Section 5.5.1). Before we begin, as always,
determine the null hypothesis, the hypothesis that includes the “no effect”null hypothesis
position.2

The first step of the Wilcoxon test is to rank all of the values, from
either largest to smallest or smallest to largest. Once they are ranked, you
add up the ranks of either group. For this example, let us add the ranks of

2This comment is actually very important. Except when we are making power calcula-
tions, we only test the null hypothesis. This is because the null contains all of the information
about the distribution we are using in our test. This is why I have often written the null
hypothesis in distributional form.

Do not ever forget that these tests are based on the distribution assumed, not necessarily
on the stated null hypothesis. The key is to match your statement with the distributional
hypothesis.
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State External Debt Rank Type

Australia 920 11 D
Brazil 216 7 D
China 347 9 A
Iraq 50 1 A
Kazakhstan 93 4 A
Norway 548 10 D
Pakistan 52 2 A
Saudi Arabia 72 3 A
South Korea 334 8 D
Ukraine 104 5 A
United Arab Emirates 129 6 A

Table 6.1: External debt (xi), in billions for selected States. Data from the CIA(2009).
This table accompanies Example 6.4. In this data, m, the number of democratic states
under consideration, is 4 and n, the number of autocratic states under consideration, is 7.

the autocratic States (it is easier to add smaller integers). With that, our test
statistic is W = 30 (using this method), and our sample sizes are m = 4 and
n = 11. Looking at the Mann-Whitney table, we find our p-value is p = 0.01.
As this is a one-sided test, we do not need to double that p-value. As p =
0.01 < α = 0.05, we can reject the null hypothesis and conclude that the data
support my friend’s contention that democratic States have a higher average
external debt than autocratic States. �

Again, in R, determining the p-value is very straight-forward. The applicable p-value
function is the same as for the one-sample test. You just pass it two samples
instead of one. Thus, for this example, you would use:

a = c(347,50,93,52, 72,104,129)
d = c(920,216,54,334)
wilcox.test(a,d, alternative="less")

The output gives the test statistic (W = 2) and the p-value (p = 0.01212).

Note: There is a little disagreement in the literature (and in the statistical
software) as to what should be the test statistic. Some assert that the
larger of the sum of the ranks should be the test statistic. Others assert
that it should be the smaller of the sum. Others do the calculations on the
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difference in the sums. In the end, it really does not matter. The different
programs use test distributions adjusted for their specific test statistics.
Thus, the p-values will be the same across software.

Example 6.5: The football1 dataset contains the points scored in all of
the 2009 games played by Big 12 and SEC teams. My friend is a big fan
of the SEC. Of course, I am a OSU Cowboys fan. My friend stated that theGo Pokes!
average number of points scored by the SEC is greater than that of the Big 12
(in 2009). Is my friend correct?

Note that the data are from 2009 and my friend would like to gen-
eralize this sample to all SEC and Big 12 football games (the population).

Solution: First, we must import the football1 dataset into R, giving it a
useful name:

fb <- read.csv("football1.csv")

This command imports the file named football1.csv located in the cur-
rent working directory and stores it in the variable fb. Once the data are
downloaded, we attach the dataset with attach(fb).3 Now, we can access
the variables in this dataset more easily.

There are two groups being discussed: Big 12 football schools and SEC
football schools. We need to compare the game scores of these two groups.
We would prefer to use the two-sample t-test as it is more powerful than the
Mann-Whitney test.

The assumption of the two-sample t-test is that the measurements in
each sample (group) are Normally distributed. To test this assumption, we
first need to separate the scores into the two groups. In this example, the
measurement variable is score and the grouping variable is conference.
Thus, we can create the vector of Big 12 scores by

b12 = score[conference=="Big 12"]

Similarly, we create the vector of SEC scores by

sec = score[conference=="SEC"]

With this, we now have the two samples (variables) to compare: b12 and sec.

3Please read the note at the end of the chapter regarding the attach() function.
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Now, testing each group of scores for Normality is straight-forward;
we use the Shapiro-Wilk test on each group.

shapiro.test(b12)
shapiro.test(sec)

Note that at least one group violates the assumption of Normality. Thus, we
should not use the t-test. We use the Mann-Whitney test instead.

The question asks about whether SEC teams scored more points, on
average, than Big 12 teams. While we would have liked to use the two-
sample t-test, at least one of the two groups was not Normally distributed.
Thus, we will use the Mann-Whitney test. The command to perform the
non-parametric test is

wilcox.test(sec,b12, alternative="greater")

R tells us the value of the W statistic as well as the p-value, which is what
we need. The results of the Mann-Whitney test indicate that there is not
sufficient evidence against the null hypothesis (W = 10106; p = 0.6449). As
such, we are unable to reject the null hypothesis and conclude that the two
conferences do not score significantly different numbers of points in their
games, on average. �

Note: Some will (and should) point out that my friend is relying on the
unstated assumption that 2009 is a “typical” year for the SEC and the
Big 12. In serious research, this needs to be explored and shown to be a
reasonable assumption. If it is not, then we cannot generalize the results generalize
from 2009 to other years.

Because there were only two groups in the dataset, we could have used a
shortcut wilcox.test( score ∼ conference ).

The code score ∼ conference is a “formula” in R: The dependent formula
variable is to the left of the tilde; the independent variable(s), to the right. If
there are more than two groups represented, you cannot use this shortcut.
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Area ID MFRI Biome Type

1 1 Xeric Shrubland
2 2 Xeric Shrubland
3 3 Xeric Shrubland
4 4 Xeric Shrubland
5 15 Xeric Shrubland
6 26 Temperate Broadleaf Forest
7 33 Temperate Broadleaf Forest
8 80 Temperate Broadleaf Forest
9 100 Temperate Broadleaf Forest

10 125 Temperate Broadleaf Forest
11 150 Temperate Broadleaf Forest
12 240 Temperate Broadleaf Forest

Table 6.2: Mean fire return intervals for 12 areas in the United States. The biome type is
also provided. This data is for Example 6.6.

Example 6.6: A biome is an ecological community with a similar climactic
condition. There are many ways of grouping biomes, they all focus on differ-
ent aspects of the ecosystem. I prefer the World Wild Fund for Nature (WWF)
classification system, which enumerates 14 different terrestrial biomes.

The mean fire return interval is the average time between major firesmfri
in the ecological community.

I hypothesize that the mean fire return interval for xeric shrublandsresearch hypothesis
is shorter than that for temperate broadleaf forests. To test this hypothesis, I
randomly sampled five xeric shrubland areas and seven temperate broadleaf
forest areas. I measured the mean fire return interval for each of the 12 areas
(Table 6.2).

Solution: The research (stated) hypothesis is

HR : µx < µt

Because it does not contain an equality (=, ≤, or ≥), it is our alternative hy-
pothesis. Thus, our null and alternative hypotheses are

H0 : µx ≥ µt
HA : µx < µt

152



Figure 6.3: A box-and-whiskers plot of the mean fire return interval for two biomes, xeric
shrubland and temperate broadleaf forest. Note the significant difference in the measures
of center.

With those hypotheses stated, we can continue to selecting the best
test. Because it is more powerful, I would prefer to use the two-sample t-test. parametric test
It assumes that the measurements in each group are Normally distributed.
The Shapiro-Wilk test, however, indicates that the mean fire return intervals Normality
for the xeric shrubland are not Normally distributed (p = 0.022 < 0.05 = α).
Thus, we will use the Mann-Whitney test. non-parametric test

According to this test, since p = 0.0013 < 0.05 = α, we reject the null
hypothesis and conclude that the average mean fire return intervals for xeric
shrubland are shorter than those for temperate broadleaf forests (W = 0;p =
0.0013). In fact, we are 95% confident that the average mean fire return
interval for xeric shrublands is from 25 ti 149 years shorter than that of the
temperate broadleaf forests. Figure 6.3 illustrates this. �

The R code for this analysis is

xer = c( 1,2,3,4,15 )
tbf = c( 26,33,80,100,125,150,240 )

# Test Normality
shapiro.test(xer)
shapiro.test(tbf)
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# Test null hypothesis
wilcox.test(xer,tbf, alternative="less")

# Obtain the symmetric 95% confidence interval
wilcox.test(xer,tbf, conf.int=TRUE)

Non-parametric tests do not assume the specific distribution of the measures.
They do, however, make other assumptions. In order to use the Wilcoxonassumption
test, you must assume that the the underlying distribution is symmetric. In
order to use the Mann-Whitney test, you must assume the two samples are
identically distributed (except for the center). I will leave it as an exercise for
you to investigate the effect of different distributions on the applicability of
the Wilcoxon-type tests.

6.5: Non-Parametric Means Tests II*

The two-sample t-test requires that the sample means of each group have a
Normal distribution. This means that either the measurements come from a
Normally-distributed population or that the sample size is large enough for
the Central Limit Theorem to be useful (Appendix C). The Mann-Whitney
test, a non-parametric test, requires that the two populations differ only in
the middle; the distributions are otherwise the same. When the mean and
the variance are independent, this assumption may be easily met. When the
mean and the variance are dependent, this assumption cannot be met (see,
for instance, Sections A.5, B.4, and B.5, among others). In such cases, the
mean and the variance are functions of each other. This is a direct violation
of the assumptions of the Mann-Whitney test.

In such cases, we still have an option, a decidedly less powerful option—
the permutation test.permutation test

6.5.1 The Permutation Test The key to the permutation test is to see
that, under the null hypothesis, the two samples come from the same popula-
tion. The grouping is artificial in that any other grouping will produce simi-
lar results. Permutation tests permute the sample into all possible groupings,
measure the test statistic for each of these other groupings, and compare the
observed test statistic to this distribution of possible test statistics.

The number of permutations increases exponentially with the sample
size. Thus, large samples require too much time to perform full permuta-
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tion tests. A slightly weaker alternative is the randomization test. This test randomization test
randomly permutes the combined sample multiple times to obtain the dis-
tribution of possible test statistics.

Here is the process:

1. Given: two samples, x1 and x2, of size n1 and n2

2. Calculate x1 − x2, which is the test statistic

3. Repeat the following a sufficiently large number of times. This is the
loop.

a) Randomly permute the combined sample into two new samples of
size n1 and n2

b) Measure the test statistic of this partitioning

4. Compare the observed test statistic with this distribution of test statis-
tics

Here, I provide the raw code to illustrate the above steps. However, there are
packages in R that perform permutation (randomization) tests. If you wish,
you can skip to that section.

6.5.2 The Code* Let us see how a randomization test can be created in R.
Let us start with two samples, x1 and x2:

x1 = c(10.76, 15.05, 17.01, 5.07)
x2 = c(19.50, 8.16, 10.38, 6.75, 12.72)

Note that the sample sizes are different. This is entirely permissible.

n1 = length(x1)
n2 = length(x2)

Now, we calculate the observed test statistic.

obs = mean(x1) - mean(x2)

Now, we do the loop. For ease, let us do the loop 10,000 times. Recall that
the purpose of the loop is to approximate the distribution of the test statistic.
Thus, we will need to store these unobserved test statistics in a variable. For
want of a better name, let this variable be TS.

With this, the opening of the loop will be the lines
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TS = numeric()
for( i in 1:10000) {

Inside the loop, we need to randomly assign n1 of the values to group 1 and
n2 of the values to group 2. These two lines randomly permute the values
into group 1.

pmt = sample(n1+n2,n1)
grp1 = c(x1,x2)[pmt]

This line puts the rest into group 2

grp2 = c(x1,x2)[-pmt]

Those three lines constitute Step 3a. Step 3b is to calculate the test statistic
for this particular partitioning.

TS[i] = mean(grp1) - mean(grp2)

This ends the loop, so the next line is

}

After this loop runs 10,000 times, we can plot the distribution of test statis-
tics

hist(TS)

We can also calculate a p-value

2*min(mean(TS>=obs),mean(TS<=obs))

The entire code is given here, for convenience.

x1 = c(10.76, 15.05, 17.01, 5.07)
x2 = c(19.50, 8.16, 10.38, 6.75, 12.72)
n1 = length(x1)
n2 = length(x2)

obs = mean(x1) - mean(x2)

TS = numeric()
for( i in 1:10000) {

pmt = sample(n1+n2,n1)
grp1 = c(x1,x2)[pmt]
grp2 = c(x1,x2)[-pmt]
TS[i] = mean(grp1) - mean(grp2)

}
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hist(TS)

2*min(mean(TS>=obs),mean(TS<=obs))

Running this code gives a p-value of 0.8946. As this value is greater than
α = 0.05, we fail to reject the null hypothesis; we were unable to detect a
difference in the means of these two populations.

Note: As with all non-parametric tests, the permutation test is of low
power. In fact, as with all tests based solely on the data, this test has very
low power. But, sometimes, this test is all one can use.

6.5.3 The PERM Package The above code is very general and portable.
The only lines that need to be changed are the first two, the lines specifying
the samples. Everything else can be left alone.

However, there are some advances with this test that are beyond the
scope of this text. As such, you should use on of the packages devoted to the
permutation (and randomization) test. In R, there are several and include
coin, permtest and perm. Here, I show you how to use the perm package.

For comparing two populations, the function is permTS. The perm permTS
represents “permutation test,” the TS, “two samples.” There are only two
required slots, corresponding to the two samples. A third slot allows you to
perform one-sided hypothesis tests. A fourth slot allows you to use different
varieties of the permutation test.

Thus, permTS(x1,x2) will perform a two-sided variety of the above
permutation test, while permTS(x1,x2, alternative="less")will perform
a one-sided variety.

There are four varieties available, one approximation and three exact
forms. The approximation uses the permutation Central Limit Theorem. The
three exact methods use the network algorithm, Monte Carlo, and a complete
enumeration. Thus, the following will perform a permutation tests using
each of the above methods:

permTS(x1,x2, method="pclt")
permTS(x1,x2, method="exact.network")
permTS(x1,x2, method="exact.mc")
permTS(x1,x2, method="exact.ce")
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Running these show that the p-values are not all the same. This is due to dif-
ferent methods for estimating the p-value. None of the four is guaranteed to
be always better than the others. There will rarely be a substantive difference,
so it rarely matters.

6.6: Further Examples

To further illustrate some of these processes, this section provides several
additional examples.

Example 6.7: The HeartOfTheValleyTriathalon dataset contains a
sample of the intermediate and the finishing times for participants in the
May 26, 2014, Heart of the Valley Triathlon held in Corvallis, Oregon. One of
the racers hypothesized that males finished faster, on average, than females.
Test her hypothesis.

Solution: Her (research) hypothesis is µm < µf . As this does not contain the
“equals” position, it is also the alternative hypothesis.

As we are testing the average racing times for two populations, we
would like to use the two-sample t-test as it is the most powerful of those
available to us. However, it requires that the measurements in each group
come from a Normally-distributed population. To test this, let us use the
Shapiro-Wilk test. According to this test, both samples pass (pm = 0.2414;pf =
0.2971). Thus, we can use the two-sample t-test.

According to this test, there is a significant difference in times between
the two genders (p < 0.0001), with the male times being significantly faster
than female times, on average. The following is the code used.

tri = read.csv("http://rfs.kvasaheim.com/data/
HeartOfTheValleyTriathalon.csv")

attach(tri)

maletime = TOTALTIME[GENDER=="M"]
femaletime = TOTALTIME[GENDER=="F"]

shapiro.test(maletime)
shapiro.test(femaletime)

t.test(maletime,femaletime, alternative="less")
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The first two lines import the data from the Internet and attach it. The second
two lines partition the finishing times into male finishing times and female
finishing times. The third two lines perform the Shapiro-Wilk test on the two
samples. Finally, the last line performs the two-sample t-test, which tests the
null hypothesis against the alternative hypothesis that male times are lower,
on average, than female times.

Because the p-value was less than α = 0.05, we rejected the null hy-
pothesis in favor of the alternative. We were able to detect a difference in
average times between men and women in this triathlon. �

Example 6.8: The crime dataset contains a sample of a lot of variables,
including population of the state in 2000 and the state’s census region. An
associate of mine hypothesized that the average state population in the South
is greater than that in the Midwest. Test this hypothesis.

Solution: The research hypothesis is µs > µm. Since this does not contain the
equals position, it is also the alternative hypothesis.

As we are comparing an average for two population, I would like to
use the two-sample t-test as it is the most powerful of those available to
us. However, it requires that the measurements in each group come from
a Normally-distributed population. To test this, let us use the Shapiro-Wilk
test. According to this test, the Midwest sample passes (pm = 0.2113), but the
South sample does not (ps = 0.00145). Thus, we cannot use the two-sample
t-test.

We can use the Mann-Whitney test, but that assumes the two popu-
lations differ only in their centers. Histograms of these two samples suggest
that the two may differ in more than just their means (Figure 6.4). However,
the graphical evidence is equivocal. Thus, let us perform both the Mann-
Whitney test and a randomization test to better understand the differences
of the two populations.

According to the Mann-Whitney test, we are unable to detect a dif-
ference in the two populations (p = 0.5087). The two-sample randomization
test (using Monte Carlo) concurs (p = 0.409). Thus, we fail to reject the null
hypothesis and are unable to detect a difference in the average state popula-
tions in these two regions of the United States.
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Figure 6.4: A back-to-back histogram for the populations in each of the two census re-
gions. This is done to gauge whether the two samples come from populations that differ
only in their location parameter (center).

The following is the code used for this analysis. It also includes the
code for the back-to-back histogram (Figure 6.4).

cr = read.csv("http://rfs.kvasaheim.com/data/crime.csv")
attach(cr)

pops = pop00[census4=="South"]
popm = pop00[census4=="Midwest"]

shapiro.test(pops)
shapiro.test(popm)

wilcox.test(pops, popm, alternative="greater")
permTS(pops, popm, alternative="greater", method="exact.mc"

)

As with the previous example, the first two lines import the data from the
Internet and attach it. The second two lines partition the state populations
into southern populations and midwestern populations. The third pair of
lines perform the Shapiro-Wilk test on the two samples. Finally, the last pair
of lines perform the Mann-Whitney test and the randomization test.
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The following gives the code for the back-to-back histogram. Note
that it requires you “source” a function found online on the book’s website.

source("http://rfs.kvasaheim.com/Rfctns/histb2b.R")
histb2b( pops, popm, yaxt="n",bty="n", direction=2, names=

c("South","MidWest"), breaks=15)

�

Note: Back-to-back histograms are very useful in determining if two vari-
ables have the same distribution (except for the center). When exam-
ining them, make sure you pay attention to the variance and the skew.
The Mann-Whitney test is actually robust to violations of its assumption.
Thus, you do not have to be too strict in making sure the two distributions
are the same.

Example 6.9: The crime dataset contains a sample of a lot of variables, in-
cluding the gross state product (GSP) per capita (average income in the state)
in 2000 and the census region of the state. An associate of mine hypothesized
that the average GSP per capita in the South is less than that in the Midwest.
Test this hypothesis.

Solution: The research hypothesis is µs < µm. Since this does not contain the
equals position, it is also the alternative hypothesis.

As we are comparing an average for two population, I would like to
use the two-sample t-test as it is the most powerful of those available to
us. However, it requires that the measurements in each group come from
a Normally-distributed population. To test this, let us use the Shapiro-Wilk
test. According to this test, neither sample comes from a Normally-distributed
population (pm = 0.0159;ps = 0.0001049). Thus, we cannot use the two-
sample t-test.

We can use the Mann-Whitney test, but that assumes the two popula-
tions differ only in their centers. Histograms of these two samples strongly
suggest that the two may differ in more than just their means (Figure 6.5).,
with the variance of the Midwestern GSPs per capita being much smaller
than that of the South. Thus, let us perform a randomization test.
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Figure 6.5: A back-to-back histogram for the GSP per capita in each of the two census
regions. This is done to gauge whether the two samples come from populations that differ
only in their location parameter (center).

According to the two-sample randomization test (using the permuta-
tion central limit theorem), we cannot detect a difference in the average GSP
per capita in the two census regions (p = 0.7142).

Again, here is the code for the analysis.

cr = read.csv("http://rfs.kvasaheim.com/data/crime.csv")
attach(cr)

gsps = gsp00[census4=="South"]
gspm = gsp00[census4=="Midwest"]

shapiro.test(gsps)
shapiro.test(gspm)

permTS(gsps, gspm, alternative="less", method="pclt")

As with the previous example, the first two lines import the data from the
Internet and attach it. The second two lines partition the GSPs per capita
into southern and midwestern samples. The third pair of lines perform the
Shapiro-Wilk test on the two samples. Finally, the last line performs the
randomization test. �
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6.7: Conclusion

In this chapter, you have learned how to perform more tests of means: those
for comparing two independent samples. You have also again examined two
classes of tests: parametric (assumes a specific distribution for your data)
and non-parametric (does not assume a specific distribution for your data).

Non-parametric tests are useful if your data has an obviously non-
Normal distribution or if the sample size is small. However, the weakness of
all non-parametric tests is that they have lower power than the parametric
tests. As such, when the parametric assumptions are not met, one should run
the non-parametric test.

Frequently, we wish to compare more than two groups. In such cases,
we can repeatedly use the t-test. However, we need to adjust for the fact that
we are performing multiple tests on the same data. The disadvantage is that
adjustments for multiple comparisons tend to reduce the power of the test.
The advantage is that we already know how to perform these tests.

If we do not wish to lose power and perform multiple comparisons,
we must use either an analysis of variance test or the Kruskal-Wallis non-
parametric test. In a future chapter, we learn about these two tests as well
as data transformation, which may allow us to use parametric tests when the
original data is severely non-Normal, and post-hoc tests, which allow us to
determine which groups are different.
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6.8: End of Chapter Materials

6.8.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Statistics:

length(x) Returns the number of values in the vector x, if x is a vector. Re-
turns the length of the character string x, if x is a character string.

shapiro.test(x) This performs a Shapiro-Wilk test, which determines if the
provided sample comes from the Normal distribution.

t.test(·) This function preforms a t-test of the provided data. The four types
of t-tests can be specified as

t.test(x, mu=) 1-sample t-test

t.test(x,y) 2-sample t-test, unequal variances

t.test(x,y, var.equal=TRUE) 2-sample t-test, equal variances

t.test(x,y, paired=TRUE) 2-sample, paired t-test

wilcox.test(x,y) Performs the Mann-Whitney test, comparing the medians
of two samples.

permTS(x,y) Performs a permutation or randomization test comparing the
centers of two samples. This requires loading the perm package.

Probability:

rexp(n) Returns n random numbers from the specified Exponential distri-
bution: rexp(100,r=3) gives 100 random numbers drawn from an
Exp(λ = 3) distribution.

dnorm(x) Returns the likelihood (or density) for an x-value according to the
specified Normal distribution: dnorm(1,m=3,s=6) returns the value of
the pdf at 1 corresponding to theN (µ = 3,σ = 6) distribution, 0.062897.
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pnorm(x) Returns the cumulative probability for an x-value according to
the specified Normal distribution: pnorm(1.96,m=0,s=1) returns the
value of the CDF at 1.96 corresponding to theN (µ = 0,σ = 1) distribu-
tion, 0.975.

qnorm(p) Returns the value of x corresponding to the p-value provided ac-
cording to the specified Normal distribution: qnorm(0.95,m=5,s=1)

returns the x-value such that P [X < x] = 0.95, where X is distributed
asN (µ = 5,σ = 1).

rnorm(n) Returns n random numbers from the specified Normal distribu-
tion: rnorm(100,m=3,s=6) gives 100 random numbers drawn from a
N (µ = 3,σ = 6) distribution.

pt(x) Returns the cumulative probability for an x-value according to the
specified Student’s t distribution: tnorm(1.96, df=11) returns the
value of the CDF at 1.96 corresponding to the t(ν = 11) distribution,
0.962. If you would rather calculate the area between your value and
∞ (i.e. P [X > x]), use the parameter lower.tail=FALSE. Otherwise,
the area is calculated between your value and −∞, as usual.

Graphing:

abline() Draws a line on a currently open plot: abline(h=3) draws a hor-
izontal line at y = 3; abline(v=6) draws a horizontal line at x = 6;
abline(a=3,b=1) draws a line with intercept a = 3 and slope b = 1.

hist(x) Calculates (and draws) a histogram corresponding to the variable x.

histb2b(x,y) Draws a back-to-back histogram for variables x and y. To use
this, the function must first be sourced from the book’s website.

Mathematics:

abs(x) Returns the magnitude of the argument: abs(-3) = 3.

sqrt(x) Returns the positive square root of the argument: sqrt(9) = 3.
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Programming:

attach(d) Connects the dataset d to the current working environment so that
one does not need to use ‘$’ notation to access its variables and values.
This is rather handy if you are only using one dataset in your analysis.
If, however, you are using several, then it becomes rather easy to forget
that the value you are requesting may not be the one you actually want.
As such, use this with care.

for(){} Creates a loop in your script, allowing statements contained within
the braces to be performed more than once. This statement is invalu-
able when performing Monte Carlo analysis.

function(){} Creates a user-defined function, whose parameters (required
or options) are contained in the parentheses immediately following
function, and whose statements are contained in the braces following
function.

levels(x) Returns the levels of the categorical variable x.

names(d) Returns the variables contained in the d variable, which can be a
dataframe, a list, or a matrix/array.

read.csv(f) Imports a dataset from f , the specified file location. If the first
row (header) of the dataset contains variable names, you may specify
the optional parameter header=TRUE in the function call; otherwise,
you must specify header=FALSE.
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6.8.2 Exercises and Extensions This section offers suggestions on things
you can practice from this chapter. Save the scripts in your Chapter 6 folder.
For each of the following problems, please save the associated R script in the
chapter folder as ext0x.R, where x is the problem number.

Summary:

1. There does exist a two-sample z-test. Why is it not covered in this chap-
ter? What would its drawback be?

2. Why does one want to use the two-sample t-test over the Mann-Whitney
test? Why would one use the Mann-Whitney test instead of the two-
sample t-test?

3. What is the assumption of the two-sample t-test? How would one test
it (name the test)?

4. How does the work-flow for the one-sample t-test differ from that of
the two-sample t-test? What is the reason for that difference?

5. When should the Mann-Whitney test be used and when should the
Wilcoxon test be used?

6. Why are permutation (randomization) tests sometimes needed? Why
should they be used only as a last resort?

Data:

7. In Example 6.5, we first divided the data into two subsets and then
performed the Mann-Whitney test. Import the football1 dataset and
use the following line of code in lieu of creating two separate subsets:
wilcox.test(score ∼ conference). Save this script in your chapter
folder as ext03.R.

a) What are the differences in the output?

b) Is score an independent or a dependent variable?

c) Is conference an independent or a dependent variable?

8. Let us examine the patrickHenry datafile. A research hypothesizes
that the female students at Patrick Henry College score higher on the
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SAT Mathematics test, on average, than the male students. Provide 95%
confidence intervals for the means of the SAT Mathematics test score
for the two genders and for the difference between the two genders. Do
the data support the researcher’s contention? Provide an appropriate
box-and-whiskers plot to illustrate your point.

9. Let us again examine the patrickHenry datafile. A research hypoth-
esizes that the female students at Patrick Henry College score higher
on the SAT Verbal test, on average, than the male students. Provide
95% confidence intervals for the means of the SAT Verbal test score for
the two genders and for the difference between the two genders. Do
the data support the researcher’s contention? Provide an appropriate
box-and-whiskers plot to illustrate your point.

10. Using the patrickHenry datafile, can we conclude that the average
female has a higher GPA than the average male? Explain fully using
statistics and graphics.

11. Using the studentHeight datafile, can we conclude that the average
male is taller than the average female? Explain fully using statistics
and graphics.

Monte Carlo:

12. Create a random dataset (of size 100) from the Normal distribution,
with mean 4 and standard deviation 1. Create a second dataset (of size
500) from an Exponential distribution, with mean 4 (rate, λ = 0.25).
Use a seed value of 3. Test the null hypothesis that these two distri-
butions have the same mean. Save this script in your chapter folder as
ext01.R.

a) If you wanted to use the parametric test, is the sample size large
enough?

b) Which test should you use?

c) Does that test reject the null hypothesis?

d) What is the appropriate conclusion based on the test results?

e) Knowing what you know about the actual variables, are the two
population means equal?
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13. Create a random dataset (of size 10) from the Normal distribution, with
mean 4 and standard deviation 1. Create a second dataset (of size 10)
from a Gaussian distribution, with mean 4.1 and standard deviation 1.
Use a seed value of 3. Test the null hypothesis that these two distri-
butions have the same mean. Save this script in your chapter folder as
ext02.R.

a) If you wanted to use the parametric test, is the sample size large
enough?

b) Which test should you use?

c) Does that test reject the null hypothesis?

d) What is the appropriate conclusion based on the test results?

e) Knowing what you know about the actual variables, are the two
population means equal?
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that are connected with the topics in this chapter.
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