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This chapter deals with drawing conclusions about the
center of a single population based on a sample of data.
These measures of center may be the mean or the me-
dian. Throughout this chapter, pay attention to the fol-
lowing:

• The number of categories is important; it helps to
determine which method you ultimately use. For this
chapter, we will use only single categories.

• Some of these methods assume that the measure-
ments are Normally distributed within the cate-
gories. Violations of this assumption have conse-
quences in the applicability of the models (as dis-
covered in Chapter 1). However, there are alterna-
tive methods that can be used if the underlying mea-
surements are not distributed Normally. Using these
methods, however, will reduce the power of the tests.
Remember, you cannot get something for nothing.

• Other methods require the measurements come
from a symmetric distribution. If this is violated,
then one cannot easily draw conclusions about the
population mean, except through simulation (Monte
Carlo).

§ § §

The mayor of İstanbul decided that the average response
times for the 30 fire stations in his city were too great. To
reduce response times, he required all 30 stations to use
a new GPS mapping system, with the expectation that the
increased cost would be balanced out by a significantly
reduced average response time.
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5.1: Units of and Levels of Analysis

Before we begin discussing appropriate methods to draw conclusions on a
single sample, we should discuss ‘units of analysis’. In the sciences, the unit unit of analysis
of analysis is the entity that serves as the focus of your theory, the item on
which (or on whom) you ostensibly perform your measurements.1 It is very
important to be able to articulate the unit of analysis clearly and precisely.
Without knowing your unit, there is no way of knowing how your variables
are supposed to affect it.

There is a difference between a unit of analysis and a level of analysis.
The level of analysis refers to the aggregation level of your variable, not of
your unit. There are several different ways of categorizing the aggregation level of analysis
levels; however, the four basic levels of analysis in the social sciences are the
individual level, the societal (or group) level, the state level, and the system
level.

An example should make these differences more clear: In some re-
search, we try to model the behavior of groups in their decision to use terror-
ism. Some of the variables used include ethnic separation, level of democracy variable
in the state, economic expansion in the state, and the level of globalization in
the world (Forsberg 2007). Here, the unit of analysis is the group. Therefore, unit of analysis
all measured variables must affect the group. The variables are taken from
three different levels of analysis. The ethnic separation variable is measured level of analysis
at the group level; that is, that variable measures how separate the group is
from its neighbors. The democracy variable is measured at the state level of
analysis; it measures an aspect of the state. In the theory, state-level factors
affect the group, therefore it makes sense to include the variable under the
guise of ‘the democracy the group experiences.’ The economy is also a state-
level variable. It is included because the group also feels the effects of a poor
economy. It affects all people in the state (albeit differently). Finally, global-
ization is a system-level variable, because its effects are felt on all states in (by
all members of) the system. As it affects the states, it also affects the groups
within the states. Table 5.1 diagrams the positions of these four variables.

The missing level in this example is the individual level. In this ex-
ample, no variable is measured at the individual level. Such measures may
include employment status, group membership, and family status of the in-
dividual. With that said, as the unit of analysis in this research is the ethnic

1The experimental sciences will frequently term these ‘experimental units.’
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The Four Levels Variables

System globalization
State democracy, economic expansion

The unit of analysis⇒ Group ethnic separation
Individual

Table 5.1: Schematic of the levels of analysis, including the variables discussed in the text
and the unit of analysis.

group, individual-level variables cannot be used in this research. In fact,
there are ontological reasons why lower levels of analysis cannot be used to
measure higher levels, although the opposite is certainly not the case.

5.2: The z-test

The next sections deal with drawing conclusions about the population mean
based on the sample of data from a single group. The differences among the
methods depends on your knowledge about the underlying distribution of
your measurements. The first two methods rely on mathematical relation-
ships between known probability distributions. The final is based relation-
ships within an unknown, yet symmetric, distribution.

Note: In general, where allowed, presented tests are given in order of
declining power. That is, the most powerful tests are mentioned firstpower
in the discussion, followed by tests of less power. Also note that earlier
tests (the more powerful ones) also tend to have the greatest number of
assumptions behind them. That is the usual rule; you cannot get some-
thing (more power) for nothing (more assumptions).

Let us suppose that you have a sample of data (of size n) from a popu-
lation with a measurement that is Normally distributed. Let us also assume
that you know the variance of the population, σ2. Finally, let us assume that
you wish to test the hypothesis that the population mean, µ, is equal to a
specified value, µ0. That is, your null hypothesis isnull hypothesis

H0 : µ = µ0
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for some specified numeric value µ0. We can also state this null hypothesis in
distributional form, which makes manifest many of the above assumptions:

H0 : Xi ∼ N (µ0,σ
2)

Of course, we would fail to reject the null hypothesis if our sample
mean exactly equaled our hypothesized mean. But, rarely does this happen
in reality. Thus, let us suppose our sample mean does not equal the proposed
mean. What is our rejection rule; when do we conclude that our null hypoth-
esis is incorrect and conclude that our alternative hypothesis is preferable?

Should we reject the null hypothesis if the hypothesized mean and the
sample mean differ by 1 unit? If not, then what about a difference of 5 units? sample mean
In other words, where is the boundary between ‘able to reject the null’ and
‘not able to reject the null’?

The answer: It depends.

First, it depends on how willing you are to make a mistake in rejecting
a correct null hypothesis. Type I Error

Second, it depends on the data and its spread.

5.2.1 Type I Error Rate You have previously discussed the α level of a
test. The level is also known as the Type I Error rate — the long-run propor- level
tion of times we reject a true null hypothesis (see Table 5.2). As a rate, the
α-level ranges between 0 and 1. Smaller values are better, as it is an error
rate. We can even set the Type I Error rate equal to zero: This means we never
reject a true null hypothesis. Unfortunately, this also means we will fail to
reject all of the false null hypotheses.

Failing to reject a false null hypothesis is called a Type II Error (see
Table 5.2). The symbol for the Type II Error rate is β. As with α, smaller power
is better since it is an error rate. Unfortunately, decreasing either results in
increasing the other (although not linearly). In fact, setting α = 0 results in
β = 1 (and vice-versa).

Statisticians made a decision long ago to focus on the Type I Error rate:
We would rather continue what we are doing than wrongly switch; switching
costs resources. However, we are not fanatical about it. Thus, we do not
set α = 0. Taking a cue from the legal system, we decided upon a default
value for our Type I Error rate: α = 0.05. There is no fundamental reason for
selecting this as our α value, it is just tradition.
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Reality

H0 true H0 false

Reject H0 Type I Error (α)

Fail to Reject H0 Type II Error (β)

Table 5.2: Table showing the two types of error for a test.

Once computer time became inexpensive, we began to focus more on
the calculated p-value and not the selected α-level. The p-value is the largestp-value
α for which we would reject the null hypothesis, given this data.

Note the subtlety of this point: The α is selected before we collect the
data; the p-value is a function of the data. As the p-value is a function ofrandom variable
the data, and as the data is a realization of a random variable, we know that
the p-value is a random variable. Furthermore, as we wish this p-value to
correspond to an a priori α-level, it must be distributed P ∼ U (0,1). This wasU (0,1)
the basis of the Monte Carlo testing example in Section 1.4.

5.2.2 The Test Statistic Now that we have chosen an α-level, we need to
devise a way of determining when the observed data is “too extreme” for the
null hypothesis. In order to determine whether or not to reject the null hy-
pothesis, we need to create a test statistic. As it is a statistic, the test statistictest statistic
is a function of the data. Ideally the test statistic should be easy to calcu-
late, should be easy to use, should have a known distribution, and should be
obviously related to the (population) parameter we wish to estimate.

Not all test statistics meet these ideal criteria. Some tests, like the
Kolmogorov-Smirnov statistic D, only meets one of the four suggestions —
the fourth. Others, like the z-test, have all four.2

For the opening example of this section, we have a ready-made statis-
tic. If, as the null hypothesis states, Xi ∼ N (µ0,σ

2), then we know X ∼hypothesized
distribution N (µ0,σ

2/n). Thus, to calculate the p-value, we merely calculate the x and
compare it to its hypothesized distribution.

2This is where it becomes imperative that you understand the assumptions behind the
tests. This is also why stating the null hypothesis in distributional form is helpful — it makes
manifest the distributional assumptions of the hypothesis you are testing.
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How do we know the distribution of X? By the following theorem:

Theorem 5.1. Let Xi
iid∼ N (µ,σ2) for a random sample of size n. Then X ∼

N (µ,σ2/n).

Proof. Let us define

X :=
1
n

n∑
i=1

Xi

First, we know the expected value of the sum of those random vari-
ables is the sum of the expected values. Thus,

E

[
X
]

= E

1
n

n∑
i=1

Xi


=

1
n

n∑
i=1

E [Xi]

=
1
n

n∑
i=1

E [X1]

=
1
n
nE [X1]

= µ

Second, we know that the variance of a sum of independent random
variables is sum of the individual variances. Also we recall from its definition
that V [aX] = a2

V [X]. Thus, we have

V

[
X
]

= V

1
n

n∑
i=1

Xi


=

1
n2

n∑
i=1

V [Xi]

=
1
n2

n∑
i=1

V [X1]

=
1
n2nV [X1]

= σ2/n
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Finally, we know the sum of Normally distributed random variables
is a Normally distributed random variable (v.i. Appendix B).

Thus, we can conclude

X ∼ N (µ,σ2/n)

Since the sample mean has a known distribution, we can calculate the
p-value for any given sample mean and hypothesized population mean, µ0.p-value
Of course, it is usually easier if we standardize things a bit. So, let us use the
two-tailed transformation discussed in Appendix C:

zp/2 =
x −µ0√
σ2/n

(5.1)

This statistic is distributed Z ∼ N (0,1), the standard Normal distri-
bution. We use the standard Normal table (Table C.1) in Appendix C. Thestandard Normal

distribution reason for the “p/2” subscript on z is to remind us that this is a two-tailed
test; we want to test if the observed mean is significantly different from the
theorized mean.non-directional

Example 5.1: Let us assume that we know any forest’s plant mass density
(in kg/m2) is Normally distributed with variance σ2

x = 16. A researcher hy-
pothesizes that the plant mass density in the Niepołomice Forest in Poland
is 43kg/m2. To test this hypothesis, she measured plant mass density in ten
randomly-selected places around the 42 sq mi forest: 45, 48, 42, 44, 50, 45,
49, 46, 43, and 48 kg/m2. Do the data support the hypothesis?

Solution: The first step is usually to translate reality into probability state-
ments. If we let Xi be a measurement of plant density in the forest, then our
null hypothesis in distributional form is

H0 : Xi ∼ N (µ0 = 43,σ2
x = 16)

Because of Theorem 5.1, this is equivalent to

H0 : Xi ∼ N (µ0 = 43,σ2
x = 1.6)

Since we know the variance of the distribution, and since that distri-
bution is the Normal distribution, we can use the z-test. To use this test, wez-test
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need to calculate the sample mean:

x :=
1
n

n∑
i=1

xi = 46

With this, we calculate our test statistic:

zp/2 :=
x −µ0√

σ2

n

=
46− 43√

16
10

= 2.37

Looking in the z-table in Appendix C,3 we find that the table probability is
0.0089. As this is a two-tailed test, we know our p-value is twice that: 0.0178.
Thus, as the p-value is less than our usual α = 0.05 level, we reject the null
hypothesis and conclude that the plant density in the Niepołomice Forest is conclude
significantly different from 43kg/m2.

We can use the computer to do the calculations for us:

2*pnorm(46, m=43, s=sqrt(1.6), lower.tail=FALSE),

which gives the same answer. �

5.2.3 Confidence intervals Thus, from Example 5.1, we have more in-
formation about what the actual average plant density of the Niepołomice
Forest: we know it is highly unlikely to be 43kg/m2. That answer is not en-
tirely satisfying; we are hardly closer to knowing the actual plant density
than we were before.

So, what is the actual average plant density of the Niepołomice Forest?

Our best estimate is that the average plant density is 46kg/m2 (this is
referred to as our point estimate ), our sample mean. However, how sure are point estimate
we of that value? Is it likely that the average plant density is 44 instead of
46kg/m2? What about 47 or 47.1432?

To answer this question, we need to find a range of likely values, an
interval of values that satisfies our confidence requirement (based on our
chosen α). This interval is called a confidence interval: It is based on the confidence interval

3Note that the z-value is found around the edges of the table, while the probabilities are
in the interior.
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Figure 5.1: Plot of the hypothesized distribution for the Niepołomice Forest problem. Note
that the value of the (observed) sample mean, µ0 = 46, is located in the rejection region
(dark blue). Thus, we reject the null hypothesis at the α = 0.05 level and conclude that
the plant density for the Niepołomice Forest is not equal to the assumed value of 43kg/m2.

definitions of the p-value and of the test statistic used.

Recall that our test statistic is

zp/2 :=
x −µ0√
σ2/n

Changing the p to α and the µ0 to µ, using the symmetry of the Normalsymmetry
distribution, and solving for µ gives us:

µ ∈ x ±Zα/2
√
σ2/n (5.2)

This formula gives both endpoints of the 100×(1−α)% confidence interval for
µ, the population mean. A likely value4 for the population mean is between
these two endpoints.Type I Error rate

4Note that we are defining ‘likely’ in terms of our previously selected Type I Error rate,
α. Different values of α will produce different confidence intervals for the population mean.
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Applying this to the Niepołomice Forest (Example 5.1), we find our
95% confidence interval in a direct use of Equation 5.2:

Interval endpoints = x ±Zα/2
√
σ2/n

= 46± 1.96
√

16/10

= (43.52,48.48)

Thus, we are 95% sure that the real average plant density in the Niepołomice
Forest is between 43.52 and 48.48kg/m2.

Note: The originally hypothesized average plant density was 43kg/m2.
This value is not in the 95% confidence interval. Thus, we would reject
the null hypothesis that the average plant density was 43kg/m2 (at the
α = 0.05 level). This is not a coincidence; there is a duality between hy- duality
pothesis tests and confidence intervals. If one rejects the null hypothesis
at the α level, then the 100× (1−α)% confidence interval will not contain
the hypothesized value.

5.2.4 The R function Because the assumptions underlying the z-test are
unrealistic, there is no standard R function to perform the test (there is a
z-test function in the RFS package and on the book’s website to source).
However, showing you what the function would look like will give you more
insight into programming, into R, and into the test itself.

For this code to actually work, it would require three sections. A sec-
tion to check that the input is appropriate, a section to prepare the output
to be readable, and a section doing the actual calculations. In the interest of
brevity, the first two sections will be skipped. Also for the sake of brevity,
the listing only shows the case for a two-tailed test.5

With those caveats, here is the partial listing:

1 z.test <- function(x, sigma2,
2 mu0=0,
3 alternative="two.sided",
4 conf.level=0.95
5 ) {
6
7 alpha <- 1-conf.level
8 se <- sqrt( sigma2/length(x) )

5To see the entire function, turn your web browser to http://rfs.kvasaheim.com/
Rfctn/z.test.R.
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9 xbar <- mean(x)
10 z <- (xbar-mu0)/se
11
12 if(alternative=="two.sided") {
13 a <- pnorm(abs(z)) - pnorm(-abs(z))
14 lcp <- xbar - qnorm(1-alpha/2) * se
15 ucp <- xbar + qnorm(1-alpha/2) * se
16 }
17
18 p <- 1-a

Lines 1 through 6 initialize a new function, called z.test. This func-
tion requires two pieces of information (parameters), the sample (x) and the
known population variance (sigma2). We know this because no default value
is given for them. This function also allows you to specify a hypothesizeddefault value
population mean (mu0), direction of the test (alternative), and the con-
fidence level (conf.level). If you do not specify any of these optional pa-
rameters, the defaults will be used (0, two.sided, and 0.95, respectively).

Lines 8 through 11 calculate the alpha level, the standard error, and
the z-test statistic. The standard error is as usual se =

√
σ2/n, as is the z-test statistic

statistic, z = x̄−µ0
se .

The third block, lines 13 through the end, contains the code to cal-
culate the confidence interval and the p-value for a two-sided test. Theconfidence interval

non-directional
pnorm(z) function returns the probability of a standard Normal variable tak-
ing on values less than z. In other words, pnorm() is the cumulative distri-
bution function, pnorm(z) = Φ(z) = P [Z ≤ z]. The qnorm() function returns

CDF
the z-value corresponding to a given probability, p; that is, if Φ(z) = p, then
qnorm(p) = Φ−1(p) = z. Thus, qnorm(1-alpha/2) corresponds to the zα/2 in
Eqn 5.2.

� Warning: The z-test is extremely sensitive to the closeness of the sample variance
to the population variance. As a rule of thumb, avoid the z-test. However, I
introduce it here to give you an introduction to a typical form of a test statistic for
the population mean.

§ § §

Thus, we created a perfectly viable test statistic in this section. We startedtest statistic
with an idea that we wanted a large difference between µ and µ0 to result
in a large test statistic. We then manipulated that difference so that the test
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statistic had a known probability distribution (this is the reason we had to
divide by the standard error, se).

We will use this same process to create a test statistic for those cases
when you do not know the population variance.

5.2.5 Why is this a Bad Test?* One of the assumptions of the z-test is
that we know the population variance. If we do not, we should not use the population variance
test. However, one is often tempted to substitute the sample variance for the
population variance and still use the test. That does not work. If you use the
sample variance, the distribution of the test statistic is no longer standard
Normal, it is Student’s t distribution (v.i., Section 5.3). But, how bad is it if
we violate the assumption?

Recall that one of the requirements for a test to be appropriate is for
the p-values to be distributed standard Uniform: P ∼ U (0,1). As such, we can U (0,1)
check the appropriateness of the z-test using Monte Carlo methods. Remem-
ber the parts to running a Monte Carlo experiment? Refresh your memory Monte Carlo
(v.s., Section 1.4) before reading through the code that follows.

Here is the code. Make sure you understand everything in it; you may
need to determine whether you can use a given test under non-appropriate
circumstances in your future.

1 #####
2 # Monte Carlo test of the z-test
3
4 # Preamble
5 set.seed(577)
6
7 # Initialize variables
8 p <- numeric() # to be a vector of p-values
9 t <- 1000000 # number of trials to run

10 n <- 35 # the size of each sample
11
12 # The loop
13 for(i in 1:t) {
14 x <- rnorm(n)
15 s <- sd(x)
16 p[i] <- z.test(x, mu=0, sigmax=s)$p.value
17 }
18
19 # Graphical test
20 hist(p, yaxt="n", xlab="p-value", main="", ylab="")
21 abline(h=t/20, col=4, lty=2)
22
23
24 # Kolmogorov-Smirnov test
25 ks.test(p, punif)
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Figure 5.2: The results of 1,000,000 Monte Carlo trials wherein the z-test is used, but the
standard deviation is estimated from the data (n = 35). Note that, as Gosset discovered,
one rejects more often than one should.

When this is run, we get the histogram similar to Figure 5.2. Notehistogram
that the first bar is significantly taller than it should be. Performing the
Kolmogorov-Smirnov test (line 25) indicates that we can reject the null hy-
pothesis that P ∼ U (0,1). Thus, we conclude that using the sample variance
in lieu of the population variance invalidates this test (for a sample size of
n = 35). I leave it as an exercise to see how large of a sample size is necessary
before one can use the z-test under these circumstances.

5.3: The t-test

The drawback to the z-test is that it requires you to know the variance of the
population under consideration. Reality suggests that if you do not know the
population’s mean, then you will not know its variance. A further drawbackpopulation mean
is that if you do not know the variance, the p-values (and confidence intervals
and conclusions) calculated from the z-test will most certainly be wrong.
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If you do not know the population variance, you may be tempted to
substitute the sample variance in its stead. However, this changes the distri-
bution of the test statistic, and this distribution is different from the Normal
distribution (v.s., Section 5.2.5).

Thus, we have to create a new statistic to measure the difference in the
mean. Actually, we will use the statistic suggested in the previous paragraph,
but with the change suggested above. Instead of using the population vari-
ance, we will use the sample variance. Recall that the formula for the sample
variance is

S2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
(5.3)

However, this is a random variable (it is a function of the data). As
such, it has a distribution associated with it. In fact, we can prove (should we
ever want to) that Roman majuscule

νS2 ∼ χ2
ν

where ν (the Greek letter nu) is the number of degrees of freedom (for the
one-sample case, ν = n− 1), and χ2 is the Chi-squared distribution. 6 Chi-squared

With this information, we can create our test statistic and know its
probability distribution. The statistic will be

t :=
x −µ0√
s2/n

(5.4)

This formula should look very familiar to us; it has the exact same form as
Eqn 5.1, but with s2 substituted for σ2. As such, the logic of this test statistic
is the same as for the z-statistic. However, where the z-statistic had a stan-
dard Normal distribution, the t-statistic is distributed tν , since the ratio of a distribution
Normal distribution to the square root of a Chi-squared distribution (divided
by its degrees of freedom) is the t distribution.7

6The χ2
ν distribution is the sum of ν independent squared Standard Normal random vari-

ables. That is, if Zi ∼ N (0,1), and if Y =
∑ν
i=1Zi , then Y ∼ χ2

ν . For more about the Chi-
squared distribution (see Appendix B.4).

7The t distribution was created by William Sealy Gosset in 1908, while he worked as
a statistician for Guinness Brewery in Dublin. The creation of the t is shrouded in legend
as befitting a story originating in a brewery. The basics are that Gosset worked with small
samples on which he used the z-test, but substituting s for σ . However, he soon realized that
his p-values were not correct — he rejected far too often. So, he created a distribution that
better fit small sample tests. He published under a pseudonym because Guinness did not
want its competitors to know they used statisticians for quality control. Gosset’s pseudonym
was “Student.” And thus was born the Student’s t distribution.
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The calculation of the confidence interval parallels that of the z-test,
with the exception that you must be aware of the degrees of freedom. Thedegrees of freedom
endpoints of the 100× (1−α)% symmetric confidence interval are

x ± tν,α/2
√
s2/n (5.5)

Example 5.2: Let us revisit Example 5.1. Instead of unrealistically know-
ing the variance of the population, let us use the sample to estimate the ap-
propriate variance and test the null hypothesis that the plant density in the
Niepołomice Forest is 43kg/m2.

Solution: The three values of consequence are the sample size (n = 10), the
sample mean (x = 46), and the sample variance (s2 = 7.111). With this infor-
mation, our t-statistic (from Eqn 5.4) istest statistic

t :=
x −µ0√
s2/n

=
46− 43

√
7.1111/10

≈ 3.56

Thus, t = 3.56, which is distributed as tν=9. Using our tables or our computer,
we get that the p-value is 0.00614. As this is less than our usual α = 0.05,
we can reject the null hypothesis and conclude that the plant density in the
Niepołomice Forest is significantly different from 43kg/m2.

The confidence interval is calculated using Eqn 5.5. As such, our 95%
confidence interval for the population mean is

µ ∈ (44.09,47.91)

Again, since the proposed mean, µ0 = 43, is not in the 95% confidence in-
terval, we can reject the null hypothesis at the α = 0.05 level and once againconfidence interval
conclude that the plant density is not 43kg/m2.

More importantly, we are 95% confident that the real average plant
density in the Niepołomice Forest is between 44.09 and 47.91kg/m2. �

Note: Notice that the two substantive conclusions of Example 5.2 are the
same. This will always be the case when the test statistic has a continuous
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distribution. The confidence interval and the test statistic are two sides
of the same coin.

�Warning: Also note that while the conclusions of the two examples (5.1 and 5.2)
were the same, the confidence intervals and p-values were different.8 When the
conclusion is obvious, you will usually get the same conclusion with the different
p-values. As such, this will usually not be an issue. However, when the sample
mean is close to the proposed population mean, differing p-values may force differ-
ent conclusions. As such, you will want to avoid using bad hypothesis tests, which
give you bad p-values.

Example 5.3: The mayor mentioned in the opening of this chapter has fi-
nally gathered his data. The time differences for a random sample of those 30
fire stations is as follows: 0, -5, -12, 4, -24, -1, 3, -8, -19, and -15 minutes.
(Negative values indicate that the average response time in 2011 was lower
(faster) than that in 2010.) Does the data support the contention that the new
GPS system helped change the response time from the 30 fire stations?

Solution: First, let us state the implied null hypothesis. If we define D to be define
the change in average response times for the population of fire stations, then

H0 :D = 0

Let us take this null hypothesis one step further. Let us fully state the distri-
bution of the null hypothesis. Recall that our test statistic will be distributed
tν , with ν = 9. Thus, our distributional null hypothesis is

H0 :D ∼ N (0,σ2)

When we state our null hypothesis in its distributional form, we realize much
more about what we are assuming about the test we are using. Now, as this
is our null hypothesis, our alternative hypothesis is that D is not distributed
in this fashion:

HA :D / N (0,σ2)

8Recall that the p-value is the probability of getting data as extreme or more extreme
than you did, assuming the null hypothesis is correct. From a logic standpoint, this means a
p-value cannot prove or disprove the null hypothesis; the p-value assumes the null hypothesis
is correct. Thus, the p-value only specifies (in a certain sense) how believable it is that the null
hypothesis is correct.
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Now, to determine the answer, we can either calculate the confidence
interval or the test statistic. In general, the test statistic and the p-value are
preferred, but calculating all will give a conclusion that is much more infor-
mative.

As such, let us calculate t and determine if we will reject the null hy-
pothesis. To calculate the test statistic, we need three pieces of information:
the sample size (n = 10), the sample mean (d = −7.7), and the sample variance
(s2d = 92.01). Thus, the test statistic is

t :=
d −µ0√
s2d/n

=
−7.7− 0
√

92.01/10
≈ −2.538

From this, and the fact that the degrees of freedom are ν = 9, we calculate
the p-value to be 0.0318. As this is less than our usual α = 0.05, we reject
the null hypothesis and conclude that the data supports the hypothesis that
the new GPS system was successful in reducing average response time in the
İstanbul fire stations.

The 95% confidence interval is D ∈ (−14.56,−0.84). Thus, we are 95%
sure that the real improvement in response time for the İstanbul fire stations
is between 0.84 and 14.56 minutes. �

Now, let us use R to perform the t-test. Thus far, we have use data on the
Internet (using read.csv). Let us now see how to input the data directlyremote data
into R. For this example, it is just two lines:

improvement = c(0, -5, -12, 4, -24, -1, 3, -8, -19, -15)
t.test(improvement)

The first line stores the data into the variable improvement. This line uses
the c() construct, which combines the comma-separated list of values into a
single vector of data. The second line performs the t-test using default values.
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When you run these two lines, R outputs the following:

One Sample t-test

data: improvement
t = -2.5385, df = 9, p-value = 0.03179
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-14.5618767 -0.8381233

sample estimates:
mean of x

-7.7

The output gives us the test statistic (t = -2.5385), the number
of degrees of freedom (df = 9), the p-value (p-value = 0.03179), the
mean of the time changes (-7.7), and the 95% confidence interval (-14.562
to -0.838).

As the p-value is less than our usual α = 0.05, we reject the null hy- reject
pothesis and conclude that the response times are lower this year than last.
The confidence interval tells us that we are 95% sure that this improvement
is between 0.84 and 14.56 minutes.

The improvement is statistically significant. It is up to the mayor
of İstanbul to determine if the time improvement (somewhere from 0.84 to
14.56 minutes) is worth the cost of the GPS system.

Note: There is a difference between statistical significance and practi-
cal significance. We used the t-test to show statistical significance. It is practical significance
only a function of the data. Practical significance depends on the con-
fidence interval and the cost of the change. If the new GPS system cost
$1.00 total, then the switch would be worth it. If the GPS system cost
$1,000,000,000,000, then the switch would not be worth it. Where is the
cutoff? That is a policy question and beyond the scope of this book. policy

§ § §

This is actually the first time we have explicitly compared two samples of
data (response time of the previous year and the response time of this year).
Previously, we compared a sample to a proposed parameter value. While it
is true that this test reduced to a single-sample t-test, such is not always the paired-sample t-test
case. This example relied heavily on the assumption of repeated measured
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Scores Scores

Student ID Pre-test Post-test Student ID Pre-test Post-test

1423 3.4 3.6 6532 1.3 2.1
9683 4.4 4.2 3856 4.0 4.3
4586 3.1 4.2 1685 1.0 1.1
2685 2.6 4.1 2810 2.8 4.1
5945 3.3 2.1 1345 1.3 5.0
3856 3.0 4.1 3099 2.3 4.0

Table 5.3: Sample of students and their pre- and post-test averages, to accompany the
Science Unit example, 5.4.

on a single population. If the populations are not the same, then we must find
a different test (see Chapter 6).

Example 5.4: A science teacher wants to increase the attraction of science
to her students. She came across an article describing a new unit she could
teach to them. She decided to test the efficacy of the unit in increasing the in-
terest of the students in science. To that end, she gave her students a pre-test
and a post-test that asked the same questions about their feelings concerning
science. A sample of the results (n = 12) are given in Table 5.3.

According to the sample, is there sufficient evidence that the unit in-
creased the students’ interest in science? How much?

Solution: This is another example of what is termed a “paired samples t-
test” because the individuals are specific and repeated measures are taken
on them. Thus, Student 1423 had two tests. On the first, she scored 3.4; onrepeated measures
the second, she scored 3.6 — repeated measures on an individual. The other
important aspect (as with the İstanbul example) is that we only care about
the differences between the two measurements (tests).

If we define D to be the difference in the test scores, then the null and
alternative hypotheses (in distributional form) arehypotheses

H0 :D ∼ N (0,σ2)

HA :D / N (0,σ2)

So, we perform a t-test on the differences. Doing so gives us our testdifferences
statistic of t = 2.4749. As this is a two-sided test, the p-value will be p =
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0.03085. At the α = 0.05 level, we can reject the null hypothesis and conclude
that the data suggest the unit improved the students’ interest in science. non-directional

Furthermore, we are 95% confident that the real increase in warmth
toward science due to this teaching unit is between 0.0959 and 1.6374 points.
�

The code to run this in R is

pre = c(3.4,4.4,3.1,2.6,3.3,3.0, 1.3,4.0,1.0,2.8,1.3,2.3)
post = c(3.6,4.2,4.2,4.1,2.1,4.1, 2.1,4.3,1.1,4.1,5.0,4.0)
change = post - pre
t.test(change)

Note that I opted to let R calculate the differences (change) based on the
pre-test (pre) and post-test (post) scores imported manually.

The R output is

One Sample t-test

data: change
t = 2.4749, df = 11, p-value = 0.03085
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.09592496 1.63740837

sample estimates:
mean of x
0.8666667

Solution: Thus, we know that the average increase in warmth toward science
is 0.867 points, with a 95% confidence interval from 0.096 to 1.637 points.
We also reject the null hypothesis and conclude that there was a statistically
significant change in feelings of warmth toward science (t = 2.47;ν = 11;p =
0.031). �

5.4: Testing the Assumption

As mentioned above, in formulating the t-test we assumed that the measure-
ments came from a Normally-distributed population. If the measurements
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do not, then the t-test is not appropriate. How, then, do we test this assump-
tion?

Testing for Normality is straight forward. Graphically, one can use
a Normal quantile-quantile plot or a histogram. If the plotted points fallQ-Q plot
near the diagonal line in the quantile-quantile plot, then there is sufficient
evidence that the measurements are Normally distributed. Likewise if the
histogram is bell-shaped, we make the same conclusion.

In addition to the graphical methods, we can use numeric methods
to test the assumption (null hypothesis) of Normality. For a table of many
Normality tests, see Table 13.1 of Chapter 13.

In lieu of using all of those tests, let us simply rely on the venera-
ble Shapiro-Wilk test (1965). While other Normality tests are better underShapiro-Wilk test
different circumstances, the Shapiro-Wilk test seems to be sufficient.

The R function for this test is shapiro.test. It takes only the sample
to be tested for Normality.

To see this function in action, let us return to the Niepołomice exam-
ple (Example 5.2). Running

massDensity = c(45,48,42,44,50,45,49,46,43,48)
shapiro.test(massDensity)

tests if the sample violates the Normality assumption. The code produces
this output

Shapiro-Wilk normality test

data: massDensity
W = 0.9578, p-value = 0.7606

As the p-value (p = 0.7606) is greater than our usual α = 0.05, we fail top > α⇒ pass
reject the null hypothesis and conclude that the data pass the assumption of
Normality. Thus, we can use the t-test on this data.

Example 5.5: Recall the İstanbul example (Example 5.3). Determine if the
sample violates the Normality assumption.

Solution: Running

improvement = c(0,-5,-12,4,-24,-1,3,-8,-19,-15)
shapiro.test(improvement)
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tests if the sample violates the Normality assumption. The code produces
this output

Shapiro-Wilk normality test

data: improvement
W = 0.9459, p-value = 0.6204

As the p-value (p = 0.6204) is greater than our usual α = 0.05, we fail to p > α⇒ pass
reject the null hypothesis and conclude that the data pass the assumption of
Normality. Thus, we can use the t-test on this data. �

Example 5.6: Recall the science example (Example 5.4). Determine if the
sample violates the Normality assumption.

Solution: We already defined the variable change as the improvement from
the pre-test to the post-test. With that, we only need to run the command
shapiro.test(change) to test the Normality assumption. Doing so gives
this output

Shapiro-Wilk normality test

data: change
W = 0.9399, p-value = 0.4966

As the p-value (p = 0.4966) is greater than our usual α = 0.05, we fail to p > α⇒ pass
reject the null hypothesis and conclude that the data pass the assumption of
Normality. Thus, we can use the t-test on this data as well. �

Note that all three passed the Shapiro-Wilk test of Normality. As such,
the t-test is appropriate in all three cases. If one or more of the tests had failed
the assumption test, we would not be able to use the t-test. What can we use?

5.4.1 The Effect of Non-Normality* Thus far, we have assumed that we
knew the underlying distribution of the data. Not only that, but we assumed
that distribution was Normal. Either that, or we assumed the sample size Normal
was large enough that the Central Limit Theorem promised the sample mean
was approximately Normally distributed (Appendix C). However, in reality,
the Central Limit Theorem does not always offer quick convergence: if the
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underlying distribution is not close to Normal, then the sample size must be
on the order of several hundred to ensure that the t-tests are acceptable.

Figure 5.3 shows the results of a Monte Carlo experiment demonstrat-
ing this very conclusion. Recall that for an appropriate test, the p-values
are uniformly distributed, P ∼ U (0,1), if the null hypothesis is correct. TheU (0,1)
graphs show the distribution of the p-values under different sample sizes
(n = 30,50,100,250,500, and 1000). In each case, X ∼ Exp(λ = 1), which has
a mean of µ = 1/λ = 1. If the test is appropriate, all of the bars should be
near the horizontal line. The bar that most concerns us is that first one, sinceType I Error rate
that bar is the rate at which we wrongly reject the null hypothesis (recall
α = 0.05).

According to this experiment, one will reject the null hypothesis about
40% more often than you should when your sample size is n = 30. This
proportion slightly improves when the sample size increases to n = 50; atsample size
that point, you will only wrongly reject the null about 25% more often than
you should. It is not until you get to n = 250 that the difference appears
irrelevant.

� Warning: Many books suggest that a sample size of n = 30 is sufficient for the
Central Limit Theorem to guarantee the appropriate distribution to make the test
work. However, this really depends on how close the underlying distribution is to
Normal. When that distribution is not close, you will need a much larger sample
to achieve an α-level that is close to stated.

As an aside, it also depends on how important your findings and how ex-
pensive it is to be wrong. The more expensive, the larger the needed sample size.

R code: The code to achieve similar results is as follows.

p <- numeric() ## Vector to hold the p-values
B <- 1e6 ## Number of Monte Carlo trials
n <- 30 ## Tested sample size

for(i in 1:B) { ## The loop
x <- rexp(n, rate=1)
p[i] <- t.test(x, mu=1)$p.value

}

## The graphic and the test
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Figure 5.3: Results from the Monte Carlo experiment comparing the outcomes of a t-test
with the expected outcome. The number of replicates is 100,000 in each experiment.
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hist(p, breaks=0:20/20, main="n=30")
abline(h=B/20, col=4, lty=2)
ks.test(p,"punif")

As with all Monte Carlo experiments, there are three main parts: Initializa-
tion, Loop, Output. The initialization section (Lines 1–3), lets the program
know that p is going to be a numeric vector, that the number of Monte Carlop-value
trials will be 1,000,000, and that the sample size for each trial will be n = 30.

The loop (Lines 5–8) is responsible for actually performing the exper-
iment. It samples n values from an Exponential distribution (Line 6) andExponential
performs a t-test on that sample (Line 7), storing the p-value in the variable
named p.

The analysis section (Lines 10–12), plots a histogram (Line 10) and
a horizontal line at the expected height of each bar in the histogram (Line
11). This utilitarian graphic is followed by the Kolmogorov-Smirnov test to
determine if the observed p-values have a U (0,1) distribution.U (0,1)

5.5: Non-Parametric Means Tests I

The tests of means (thus far) have all assumed that the underlying population
was distributed Normally. This assumption is rarely true, and the Central
Limit Theorem does not save us unless the sample size is quite large or theCLT
distribution of the measurements is close to Normal. So, what do we do if
the sample size is small and the sample is not sufficiently Normal? In those
cases, we can use non-parametric methods.

Non-parametric tests do make assumptions about the underlying dis-
tribution, but those assumptions do not require a specific distribution. When
comparing a single sample to a proposed population mean, the Wilcoxon
test assumes the underlying distribution is continuous and symmetric. Thesymmetry
binomial test only assumes the distribution is continuous.

5.5.1 Wilcoxon test The Wilcoxon test for the population mean requires
that the population be distributed symmetrically (and continuously). So, let
us assume that the population that gave us the continuous measures is sym-
metrically distributed. Let us select the proposed population mean, µ0. The
first step is to subtract that proposed mean from each data value. Next, rank
those differences, carrying the sign of the difference forward. Now, add uprank
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State External debt (xi ) xi −µ0 Signed Rank

Australia 920 720 6
Brazil 216 16 1
China 347 147 4
Norway 548 348 5
South Korea 334 134 3
Ukraine 104 -96 -2

Table 5.4: External debt (xi), in billions for selected States. Data from the CIA(2009).
For this, µ0 = 200.

the values of the negative ranks (or the positive ranks). Finally, go to the
Wilcoxon table and find the p-value (or critical value) corresponding to the
test statistic and the sample size.

Example 5.7: An associate of mine stated that the average external debt for
the States in the world was just $200 billion. Using a sample of six States,
test the associate’s assertion.

Solution: A sample of six States was randomly selected from all 190+ States,
and the amount of external debt was measured. The data are provided in
Table 5.4. As the null hypothesis is that the population mean is $200 billion,
we first subtract 200 from each of the xi . We then rank those values from
smallest (in absolute value) to largest, retaining the sign. Next, we decide to
add either the positive ranks or the negative ranks.9 As there are fewer, let us
sum the negative ranks.

The test statistic isW− = 2 and the sample size is n = 6. From these two
values, we use the Wilcoxon tables and see that the p-value is approximately
p = 0.10. Thus, at the traditional level, we cannot reject the null hypothesis
that my friends was correct. In other words, the data support my friend’s
hypothesis. �

The logic behind this test hinges on the same logic as all of the tests
we have discussed thus far: when the average is far from the proposed pop-
ulation mean, the null hypothesis should be rejected. Here, we are using the

9We do one or the other because we know their sum is completely determined by the
sample size. As such, there is no need to use both, and the Wilcoxon table is based on one of
them.
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median as our measure of ‘average’ (as we assume the distribution is symmet-median
ric). The distribution is based on permutations of the sample size; as such, it
is very expensive to calculate.10

Using the computer makes this, of course, much faster to calculate. In
R, the function to calculate the two-tailed probability for the above problem
is

wilcox.test(x, mu=200, alternative="two.sided")

Note that R uses the sum of the positive ranks as its test statistic.

Example 5.8: This same associate later stated that the average external debt
for the States in the world was $500 billion. Using the same sample of six
States, test the associate’s new assertion.

Solution: Because the p-value is greater than our usual α = 0.05, we fail to
reject the null hypothesis and conclude that there is not enough evidence to
conclude my friend is wrong again (V = 7;p = 0.5625). �

The R code is just wilcox.test(x, mu=500, alternative="two.sided").

5.5.2 A Binomial test To better understand the Wilcoxon test, let us re-
move some assumptions and formulate a basic test for the median value of a
continuous population. We know that if µ̃ is the median of the populationmedian test
and X is a value from that population, P [X ≤ µ̃] = 0.500. In a sample of size
n, we will have n such tests. The number of values less than the median,
T , is a Binomial random variable, with parameters n and π = 0.500; that is,
T ∼ Bin(n,0.500).

Thus, a natural test statistic is this variable T ; it fits the four require-test statistic
ments of an ideal test statistic (v.s. Section 5.2.2). Note that this test is for the
median of the population, not the mean. We can only apply it to the mean if
the distribution is symmetric (the assumption of the Wilcoxon test).symmetric

Example 5.9: Let us return to my associate’s first assertion: the average
external debt for the States in the world was just $200 billion. To use this
Binomial test, we need to interpret “average” as median.

10However, most statistical programs have a built-in function that calculates the distribu-
tion function quickly.
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Solution: We can either count the number of States with external debt below
(or equal to) the hypothesized median ($200 billion), or we can count the
number above. Since π = 0.500, the distribution of T is symmetric.

Using the data in Table 5.4, our test statistic is T = 1. We know T ∼
Bin(6,0.500). With this, we calculate the p-value as

p := 2×P [T ≤ 1]

= 2(P [T = 0] +P [T = 1])

= 2(0.015625 + 0.09375)

Thus, our p-value is 0.21875. As this is greater than our usual α = 0.05,
we fail to reject our null hypothesis and conclude that the data support my
colleague’s assertion. �

�Warning: As usual, we cannot conclude that the population median is $200
billion. We do not know the actual value of the population median. We only know
that it is not too far away from the hypothesized median.

In fact, with this sample size of n = 6, we can only conclude that we are
95% confident the population median is between $104 billion and $920 billion.

Note: The conclusion of this test is different from that of the Wilcoxon
test (Example 5.7). This starkly illustrates why we cannot accept null
hypotheses. The ability to reject a false null hypothesis is the power of accept
the test. Here, we showed that our binomial test is less powerful than the
Wilcoxon test. power

This is not too surprising. This binomial test only required that the
measurements were continuous. The Wilcoxon test required symmetry.
Also, this test only counted the number of values less than the proposed
median. The Wilcoxon test incorporated the ranks of the values.

Tests that make more assumptions and use more information tend
to be more powerful. However, one needs to test the viability of the as-
sumptions. Is the distribution of external debt really symmetric? If so,
the Wilcoxon is the right test. If not, it is not.

Non-parametric tests do not assume the specific distribution of the measures. non-parametric tests
They do, however, make other assumptions. In order to use the Wilcoxon
test, you must assume that the the underlying distribution is symmetric.
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I will leave it as an exercise for you to investigate the effect of different
distributions on the applicability of the Wilcoxon tests.

5.6: Non-Parametric Means Tests II*

At some point, it may be necessary to estimate the mean of a population that
violates both of the two assumptions. It is not Normal. It is not symmetric.
What can you do? You can simulate means from the population using the
sample and a process called non-parametric bootstrapping.

The difference between the parametric bootstrap of Section 1.4 (page
16) and the non-parametric bootstrap is that the parametric bootstrap draws
its random sample from a distribution, whereas the non-parametric boot-
strap draws its random sample from the data itself.

The non-parametric bootstrap has the advantage of being usable even
when you do not know the distribution of the population. It has the disad-
vantage of requiring the sample to be representative of the population and
the disadvantage of tending to reject at a different rate than the selected α
level. When testing means, it tends to reject at a higher rate than α, and its
confidence interval tends to be too narrow.

Review the three steps of a Monte Carlo experiment given in Section
1.4 (page 16). For the non-parametric bootstrap, the random samples are
taken from the given data and the “test statistic” is the sample mean.

Example 5.10: Let us return to the data and hypothesis of Example 5.7.
The original hypothesis was that the average external debt was $200 billion.
However, the Wilcoxon test requires that the data come from a symmetric
distribution in order to draw conclusions about the population mean. A
histogram of the data suggest that it is skewed right. The Hildebrand rule
concurs. Thus, there is evidence that the underlying distribution of exter-
nal debts is skewed left (positive). As such, the Wilcoxon test may not be
appropriate.

Since we wish to draw conclusions about the population mean, we can-
not use the median test. Thus, we can use bootstrapping. Since we do not
know the population distribution of external debt, we cannot use the para-
metric bootstrap. We use the non-parametric bootstrap.

The code for the non-parametric bootstrap in this case is
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theData = c(920,216,347,548,334,104)
n = length(theData)

B = 1e4
m = numeric()
set.seed(370)

for( b in 1:B ) {
thisSample = sample(theData,n,replace=TRUE)
m[b] = mean(thisSample)

}

quantile(m,c(0.025,0.975))

Notice how it is similar to the Monte Carlo code from Section 1.4.

The above code produces the following output:

2.5% 97.5%
220.1667 638.5000

From this, we can conclude that we are 95% confident that the true mean
external debt in the world is between $220.2 billion and $638.5 billion. Since
the hypothesized mean of $200 billion is outside this interval, we would re-
ject the hypothesis and conclude that the average external debt in the world
is not $200 billion.

�Warning: This method produces confidence intervals that are of the wrong size,
but are close. Drawing black-and-white conclusions from this is dangerous when
the hypothesized mean is close to either endpoint, such as here. This effect is
especially strong when the sample size is small, also such as here.

In other words, the estimates are poor, but better than nothing.

5.7: Further Examples

To further illustrate some of these processes, this section provides several
additional examples.

Example 5.11: The HeartOfTheValleyTriathalon dataset contains a
sample of the intermediate and the finishing times for participants in the
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May 26, 2014, Heart of the Valley Triathlon held in Corvallis, Oregon. One of
the racers hypothesized that her time of 1:20:50.15 was less than the average
time for the entire group. Test her hypothesis.

Solution: Her (research) hypothesis is µ > 1 : 20 : 50.15. In seconds, this
is µ > 4850.15. As this does not contain the “equals” position, it is also the
alternative hypothesis.

As we are testing the average racing time for a single population, we
would like to use the one-sample t-test. However, it requires that the mea-
surements come from a Normally-distributed population. To test this, I will
use the Shapiro-Wilk test. According to this test, the data are not from a
Normally distributed distribution (p = 0.03092). Thus, we cannot use the
one-sample t-test.

We can use the Wilcoxon test, but that only deals with the mean if the
data are from a symmetric distribution. According to the Hildebrand rule,
there is no evidence of the distribution being skewed. Thus, we can use the
Wilcoxon test.

According to the Wilcoxon test, we have strong evidence that the mean
completion time for the race is greater than 1:20:50.12 (p = 0.007425). A
95% confidence interval for the mean completion time is from 1:21:26:53 to
1:26:45.55.

The following is the code used for this analysis:

tri = read.csv("http://rfs.kvasaheim.com/data/
HeartOfTheValleyTriathalon.csv")

attach(tri)

time = TOTALH*3600 + TOTALM*60 + TOTALS

shapiro.test(time)

hildebrand.rule(time)

hypAvg=60*60+60*20+50.15
wilcox.test(time, mu=hypAvg, alternative="greater")
wilcox.test(time, conf.int=TRUE)

�

124



Example 5.12: The football1 dataset contains a sample of the results from
NCAA football games in the SEC and the Big 12 from 2009. An associate
hypothesized that the mean number of points scored in NCAA football games
in 2009 is just three touchdowns (21 points). Test this hypothesis.

Solution: The research hypothesis is µ = 21. Since this contains the equals
position, the alternative hypothesis is µ , 21.

As we are testing the average number of points scored for a single pop-
ulation (all NCAA teams), we would like to use the one-sample t-test. How-
ever, it requires that the measurements come from a Normally-distributed
population. To test this, I will use the Shapiro-Wilk test. According to this
test, the data are not from such a population (p = 0.001). Thus, we cannot
use the one-sample t-test.

We can use the Wilcoxon test, but that only deals with the mean if the
data are from a symmetric distribution. According to the Hildebrand rule,
there is no evidence of the distribution being skewed. Thus, we can use the
Wilcoxon test.

According to the Wilcoxon test, we have strong evidence that the mean
number of points scored in NCAA football games in 2009 is not 21 (p �
0.0001). A 95% confidence interval for the mean number of points scored is
from 27.5 to 31.0.

The following is the code used for this analysis:

fb = read.csv("http://rfs.kvasaheim.com/data/football1.csv"
)

attach(fb)

shapiro.test(score)

hildebrand.rule(score)

wilcox.test(score, mu=21)
wilcox.test(score, conf.int=TRUE)

�

�Warning: An understood assumption is that the sample is representative of the
target population. Without that assumption being true, all conclusions are sus-
pect. This is the reason simple random sampling (SRS) is so important. When
using SRS, the sample is (on average) representative of the population.
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In this case, the sample was not drawn using SRS. Without SRS, one must
now provide sufficient evidence that the sample is representative of the population.
Without that evidence, the results mean nothing.

Example 5.13: The clf contains a sample of production ratios for several
states of the world. The data collector hypothesized that the mean produc-
tion ratio in the world is greater than 50. Test this hypothesis.

Solution: The research hypothesis is µ > 50. Since this does not contain the
equals position, it is the alternative hypothesis.

As we are testing the average production ratio for a single population
(all states in the world), we would like to use the one-sample t-test. However,
it requires that the measurements come from a Normally-distributed popu-
lation. To test this, I will use the Shapiro-Wilk test. According to this test,
the data are not from such a population (p � 0.0001). Thus, we cannot use
the one-sample t-test.

We can use the Wilcoxon test, but that only deals with the mean if the
data are from a symmetric distribution. According to the Hildebrand rule,
this data comes from a positively-skewed distribution. Thus, we should not
use the Wilcoxon test. We can, however, use non-parametric bootstrapping.

According to the non-parametric bootstrap test, we have strong evi-
dence that the mean production ratio in the world is greater than 50 (p =
0.0177). A central 95% confidence interval for the mean production ratio is
from 51.4 to 100.8.

The following is the code used for this analysis:

pr = read.csv("http://rfs.kvasaheim.com/data/clf.csv")
attach(pr)

shapiro.test(productionRatio)
hildebrand.rule(productionRatio)

## Non-Parametric Bootstrapping
theData = productionRatio
n = length(theData)
B = 1e4
m = numeric()
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for(b in 1:B) {
thisSample = sample(theData,n,replace=TRUE)
m[b] = mean(thisSample)

}

mean(m<50) ## p-value
quantile(m,c(0.025,0.975)) ## confidence interval

�

Example 5.14: The studentHeight contains a sample of heights for sev-
eral (n = 20) students, both male and female. I hypothesized that the mean
student height is greater than 170cm. Test this hypothesis.

Solution: The research hypothesis is µ > 170. Since this does not contain the
equals position, it is the alternative hypothesis.

As we are testing the average height for a single population (students),
we would like to use the one-sample t-test. However, it requires that the
measurements come from a Normally-distributed population. To test this, I
will use the Shapiro-Wilk test. According to this test, the data are from such
a population (p = 0.8094). Thus, we should use the one-sample t-test.

According to the one-sample t-test, we have evidence that the mean
height of students is not greater than 170cm (p = 0.7543). A central 95%
confidence interval for the mean student height is from 160.4 to 174.8cm.

sh = read.csv("http://rfs.kvasaheim.com/data/studentHeight.
csv")

attach(sh)

shapiro.test(height)

t.test(height, mu=170, alternative="greater")
t.test(height)

�
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5.8: Conclusion

In this chapter, you have learned how to perform some tests of center (means
and medians) regarding a single population. You have also examined two
classes of tests: parametric (assumes distribution of your data) and non-
parametric (does not assume a specific distribution for your data).

Non-parametric tests are useful if your data has an obviously non-
Normal distribution or if the sample size is small. However, the weakness
of all non-parametric tests is that they tend to have lower power than the
parametric tests. As such, when the parametric assumptions are not met, one
should run the non-parametric test. If the non-parametric test fails to reject
the null hypothesis, data transformation should be attempted (v.i. Section
14).

Frequently, we wish to compare the centers of two populations, either
independent populations or repeated measures on a single population. For
the latter, the tests can be handled using the methods of this chapter. For
the former, we use the two-sample t-test, the Mann-Whitney test, or a non-
parametric bootstrapping test. The one we select depends on characteristics
of the distributions that gave us the data.
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5.9: End of Chapter Materials

5.9.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Statistics:

ks.test(x,y) This performs a Kolmogorov-Smirnov test, which determines if
the two provided samples (x,y) come from the same distribution. This
test is often used to determine if a sample is Normally distributed, in
which case x will be the data and y will be pnorm.

length(x) Returns the number of values in the vector x, if x is a vector. Re-
turns the length of the character string x, if x is a character string.

t.test(·) This function preforms a t-test of the provided data. The four types
of t-tests can be specified as

t.test(x, mu=) 1-sample t-test

t.test(x,y) 2-sample t-test, unequal variances

t.test(x,y, var.equal=TRUE) 2-sample t-test, equal variances

t.test(x,y, paired=TRUE) 2-sample, paired t-test

wilcox.test(x) Performs a one- or two-sample Wilcoxon test (known as the
Mann-Whitney test when comparing two samples).

Probability:

dnorm(x) Returns the likelihood (or density) for an x-value according to
the specified Normal distribution: dnorm(1,m=3,s=6) returns the
value of the pdf at 1 corresponding to the N (µ = 3,σ = 6) distribution,
0.0628972.

pnorm(x) Returns the cumulative probability for an x-value according to
the specified Normal distribution: pnorm(1.96,m=0,s=1) returns
the value of the CDF at 1.96 corresponding to the N (µ = 0,σ = 1) dis-
tribution, 0.975.

129



qnorm(p) Returns the value of x corresponding to the p-value provided ac-
cording to the specified Normal distribution: qnorm(0.95,m=5,s=1)
returns the x-value such that P [X < x] = 0.95, where X is distributed
asN (µ = 5,σ = 1).

rexp(n) Returns n random numbers from the specified Exponential distri-
bution: rexp(100,r=3) gives 100 random numbers drawn from an
Exp(λ = 3) distribution.

rnorm(n) Returns n random numbers from the specified Normal distribu-
tion: rnorm(100,m=3,s=6) gives 100 random numbers drawn from
aN (µ = 3,σ = 6) distribution.

Graphing:

abline() Draws a line on a currently open plot: abline(h=3) draws a hor-
izontal line at y = 3; abline(v=6) draws a horizontal line at x = 6;
abline(a=3,b=1) draws a line with intercept a = 3 and slope b = 1.

hist(x) Calculates (and draws) a histogram corresponding to the vector X.

Mathematics:

abs(x) Returns the magnitude of the argument: abs(-3) = 3.

sqrt(x) Returns the positive square root of the argument: sqrt(9) = 3.

Programming:

attach(d) Connects the dataset d to the current working environment so that
one does not need to use ‘$’ notation to access its variables and values.
This is rather handy if you are only using one dataset in your analysis.
If, however, you are using several, then it becomes rather easy to forget
that the value you are requesting may not be the one you actually want.
As such, use this with care.

for(){} Creates a loop in your script, allowing statements contained within
the braces to be performed more than once. This statement is invalu-
able when performing Monte Carlo analysis.
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function(){} Creates a user-defined function, whose parameters (required
or options) are contained in the parentheses immediately following
function, and whose statements are contained in the braces following
function.

names(d) Returns the variables contained in the d variable, which can be a
dataframe, a list, or a matrix/array.

read.csv(f) Imports a dataset from f , the specified file location. If the first
row (header) of the dataset contains variable names, you may specify
the optional parameter header=TRUE in the function call; otherwise,
you must specify header=FALSE.
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5.9.2 Exercises and Extensions This section offers suggestions on things
you can practice from this chapter. Save the scripts in your Chapter 5 folder.
For each of the problems using R, please save the associated R script in the
chapter folder as ext0x.R, where x is the problem number.

Summary:

1. Why should a research not use a level of analysis that is lower than the
unit of analysis?

2. Select an article from Section 5.9.3. Provide the unit of analysis, the
variables used, and the level of analysis for each variable in that article.

3. What is the major drawback to the z-test? Why does one not just use
the sample variance in place of the population variance?

4. What is the name of the distribution of the t-test test statistic? How
many parameters does it take? What do they (does it) represent?

5. What is the major difference between the t-test and the Wilcoxon test?
When would you use one over the other? In general, why is the t-test
preferred?

6. Explain why the test statistic for the Binomial test has the Binomial
distribution of T ∼ Bin(n,0.500).

7. Using the appropriate formula, calculate the confidence intervals for
Examples 5.3 and 5.4 by hand.

Data:

8. According to the patrickHenry datafile, what is the average SAT
Mathematics score (math)? Make sure to include the 95% confidence
interval. A research hypothesizes that the average SAT Mathematics
score at Patrick Henry College is 600. Do the data support this con-
tention? Produce a box-and-whiskers plot to illustrate your findings.

9. According to the patrickHenry datafile, what is the average SAT Ver-
bal score (reading)? Make sure to include the 95% confidence in-
terval. A research hypothesizes that the average SAT Verbal score at
Patrick Henry College is 600. Do the data support this contention?
Produce a box-and-whiskers plot to illustrate your findings.
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10. According to the patrickHenry datafile, what is the average differ-
ence between SAT Mathematics and SAT Verbal scores? A researcher
hypothesizes that the average SAT Verbal score is lower than the av-
erage SAT Mathematics score. Do the data support this contention?
Produce a box-and-whiskers plot to illustrate your findings.

11. According to the patrickHenry datafile, what is the average GPA?
A researcher hypothesizes that the average GPA is less than 2.0. Do
the data support this contention? Produce a box-and-whiskers plot to
illustrate your findings.

12. According to the positioningtubes datafile, does the data support
the contention that the average diameter of the positioning tubes is
11.99? Produce a box-and-whiskers plot to illustrate your findings.

Monte Carlo:

13. Create a random dataset (of size 500) from an Exponential distribution,
with mean 4 (rate, λ = 0.25). Use a seed value of 3. Test the null hy-
pothesis that this population has a mean of 4. Save this script in your
chapter folder as ext01.R.

a) If you wanted to use the parametric test, is the sample size large
enough?

b) Which test should you use?

c) Does that test reject the null hypothesis?

d) What is the appropriate conclusion based on the test results?

e) Knowing what you know about the actual variable, is the popula-
tion mean 4?
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14. Create a random dataset (of size 10) from the Normal distribution, with
mean 4 and standard deviation 1. Use a seed value of 3. Test the null
hypothesis that this distribution has a mean of 8. Save this script in
your chapter folder as ext02.R.

a) If you wanted to use the parametric test, is the sample size large
enough?

b) Which test should you use?

c) Does that test reject the null hypothesis?

d) What is the appropriate conclusion based on the test results?

e) Knowing what you know about the actual variable, is the popula-
tion equal to 8?
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5.9.3 Applied Research This section offers some applied research works
that are connected with the topics in this chapter.

• Charles Bérubé and Pierre Mohnen. (2009) “Are Firms That Receive
R&D Subsidies More Innovative?” The Canadian Journal of Economics /
Revue canadienne d’Economique. 42(1):206–25.

• Matthew S. Bothner, Edward Bishop Smith, and Harrison C. White.
(2010) “A Model of Robust Positions in Social Networks.” American
Journal of Sociology. 116(3): 943–92.

• Kevin Denny and Orla Doyle. (2009) “Does Voting History Matter?
Analysing Persistence in Turnout.” American Journal of Political Science.
53(1): 17–35.

• Ole J. Forsberg. (2007) Terrorism and Nationalism: Theories, causes, and
causers. Saarbr ucken, Germany: VDM Verlag.

• Esther Godson and John D. Stednick. (2010) “Modeling Post-Fire Soil
Erosion.” Fire Management Today 70(3): 32–36.

• Matthijs Kalmijn. (2010) “Consequences of Racial Intermarriage for
Children’s Social Integration.” Sociological Perspectives. 53(2): 271–86.

• John R. Lott, Jr. (2009) “Non-Voted Ballots, the Cost of Voting, and
Race.” Public Choice. 138(1/2):171–97.

• Tonya L. Putnam. (2009) “Courts without Borders: Domestic Sources
of U.S. Extraterritoriality in the Regulatory Sphere” International Orga-
nization. 63(3): 459–90.
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5.9.4 References and Additional Readings This section provides a list
of statistical works. Those works cited in the chapter are here. Also here are
works that complement the chapter’s topics.

• Lee Bain and Max Englehardt. (1992) Introduction to Probability and
Mathematical Statistics, 2nd edn. Brooks/Cole: Belmont, CA.

• William Navidi. (2006) Statistics for Engineering and Scientists, 2nd edn.
McGraw-Hill: New York.

• Samuel S. Shapiro and Martin B. Wilk. (1965) “An Analysis of Variance
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