
Chapter 1:

An Introduction to R
1.1 Installing R on your computer 5

1.2 A quick, sample session 6

1.3 A second example 13

1.4 A third example 16

1.5 Conclusion . 19

1.6 End of Chapter Materials 20

Often, there is much consternation among students as to why they have to
learn yet another statistical package. Can’t those dad-gum professors make up
their minds? Are they trying to drive us crazy? Are they getting kick-backs
from the statistical software salesmen?

The answer, more than likely, is that the specific professor truly be-
lieves that this statistical package is the best available (by whatever measure
he or she uses). I am no different. I truly believe that, overall, R is the best
statistical package available for the following four reasons:

• It is free (both free pizza and free speech).

• It is flexible.

• It is powerful.

• It matches how science should be done.

Let us take these four reasons in the above order and explain what I mean by
each.

First, it is free. The “R Project for Statistical Computing” is a not-free
for-profit foundation created for the sole purpose of creating a piece of soft-
ware that encourages scientific innovations in any field that uses statistics.1

The cost of the software is zero. That means students (and professors and
businesses) do not have to pay fees (license fees or purchase fees) to use the
software. As such, as budgets tighten, expect R to become the statistical envi-
ronment of choice for universities and for businesses. Furthermore, because
you are able to load it on a USB drive, you do not have to wander around
searching for a computer sporting R like you do with other statistical pack-
ages. It is also free in the sense that you are free to modify the code to make it
better. This latter part is what allows R to become better, stronger, and faster
as time passes.

Second and third, it is flexible and powerful. The base distributionflexible
of R contains only those parts of R that are universally useful. Thus, it is
small and fast to download and begin. However, there are assorted pack-
ages for just about any statistical analysis. And, for those methods that are
not currently supported by R, you are free to create your own functions and
packages for everyone to use. Furthermore, it is a scripting language. Aspowerful

1The URL for the R Project is http://www.r-project.org/. The URL for download-
ing R is http://cran.r-project.org/.

4

OS File link

Linux your specific distribution
MacOS X Files: (latest version)
Windows base, and then the Download link at the top

Table 1.1: A list of the appropriate links for downloading R from the website.

such, you can program it to do the same tasks repeatedly (with slight modi-
fications) so that robust analyses can be done.

Finally, it matches how science should be done. R offers a definite sepa- science
ration between the data and the analysis. It also offers a way of keeping track
of your analysis as you do the analysis. The former allows you to keep your
original dataset unmolested. The latter allows your analysis to be checked
and replicated. Both of these are important hallmarks of doing science. replicability

It is for these reasons that I use the R statistical environment. It is also
for these reasons that I prefer to teach using it. I am not saying it will cure
world hunger, but it will help you learn the right way to do science better
than some other statistical programs — plus, it is free.

1.1: Installing R on your computer

As with almost any other program, installing R requires two steps: down-
loading it and installing it. If you wish to install R to a USB drive, that is also
an option.2

1.1.1 Step 1: Download The R program can be downloaded via the In-
ternet. Using your web browser, go to http://cran.r-project.org/. Once
there, click on the type of computer operating system (OS) you have: Linux,
MacOS, or Windows. On the next page, you will click on the appropriate
link (depending on your OS) and download it to your desktop or some place
just as convenient (see Table 1.1). The specifics are up to your browser and
your computer operating system.

2One would want to do this if one uses several computers and cannot be certain that R
will be installed. The steps are the same as for a normal installation, with one change: Instead
of selecting C://R as the destination folder, you will select the R folder on your USB drive.

5

1.1.2 Step 2: Install Once the file is on your computer, run the file (an
installer) and answer the questions it asks. Usually the default selections are
appropriate. The only thing you may wish to change is the destination folder.
If you want to save R to your USB drive so you can bring R with you, you will
have to select that as your destination folder.

After the installer finishes, R is installed on your computer.3

1.2: A quick, sample session

As an example, let us do a quick, sample session that checks to make sure R
is properly installed on your computer and which does no serious statistical
analysis. In this session, you will start R, open a new script window, set the+
working directory, type in an R script, execute the script, then save the script
to your current working directory.

Before you start this session, you should create a directory for your
project, called Chapter1, a place where your analysis will take place. In
reality, you should have a different directory for each project. This is appro-
priate, as it keeps your projects separate.

1.2.1 Step 1: Start R If R is installed on your machine, find the icon
and double-click on it. If it is only on your USB drive, you will need to find
the program. Likely, it is located at USB:\\R-#.##.#\bin\ (where the #s
are digits naming your version of R, and USB is the drive letter of your USB
drive). Double-click Rgui.exe.4 Your screen should look something likeUSB
Figure 1.1.

The R window has one sub-window right now — the ‘R Console’
window. The Console window is where all the analysis really gets done. Allconsole window
commands you type must eventually find their way to the Console window
before R will actually execute them. However, the Console window should
not be where you do your analysis. It is bad science to do your analysis in the

3Actually, if you install it to your USB drive, it is not installed on the computer, per se.
You will have to double-click the R/bin/Rgui.exe file each time you wish to run R from the
USB drive. Doing it this way will mean you should become best friends with the setwd()
function.

4If you installed a different version of R, then the name of the top folder will reflect that
version. Also note that the specifics are for Windows™ installations. MacOS™ will use similar
— though not exact — processes.

6

Figure 1.1: The opening screen for R in Windows™. This is for R version 2.10.1, which
was released on December 14, 2009 (see the top line of the Console window. Your version
will differ.

Consolewindow, since the commands you type there are lost once you press
ENTER. This means replication of your findings will be extremely difficult replication
and time consuming. It is proper to type your analysis in a separate script
window and send them to the Console window to be executed. Actually,
‘proper’ is not entirely correct here, ‘the only acceptable manner’ is much more
accurate.

While there are several third-party text editors which allow you to
type your analysis and send it to the Console window, R provides a text

7

Figure 1.2: The R Window after tiling the two sub-windows (Console, left, and
Script, right). This screen capture was done in Windows™.

editor that is more than sufficient.5 The primary advantage to the built-in
text editor is that it is easy to send lines of code in the Script window to the
Console window to be executed — just type Ctrl+r when your cursor is
on the appropriate line. Or, highlight the part you want to execute and typeCtrl + r
Ctrl and r.6

5Throughout this book, I will tell you what I do and what I use. I use the text editor that
comes with R. It does everything I need it to do. If it comes up short for you, then investigate
some of the third-party options, such as eMacs, R Studio, or Revolution.

6This key combination is the method to use in Windows™. In MacOS™, you will use
Command+Enter.

8

1.2.2 Step 2: Start a new script If you are using a third-party text edi-
tor, follow the directions provided by that vendor (which may be just copy-
paste). If you are using the R text editor, open a new script: “File | New
script...”. You now have a second sub-window in the R window. This
new window is titled “Untitled - R Editor”. Tile the two windows tiling
so you can see both at the same time: “Windows | Tile Vertically”.
At this point, your R window should look similar to Figure 1.2 (Windows™
only).

1.2.3 Step 3: Type in the script You have been taught to show your work
from the first math class you took back in kindergarten. Continuing a long
and storied tradition, you should type your script into the Script window,
run it from there, and save it for future reference and evidence.

Type the simple script below into the Scriptwindow. The script does script window
the following three things: creates a univariate dataset, analyzes the dataset,
and plots the data. The first goal is accomplished with a single line. The
second by as many lines as depth of analysis you wish to perform. The last
by two lines—one for each of the two manners of graphing univariate data.

The code is as follows (make sure you type it in correctly):

1 # Basic statistics
2 # script1.R
3
4 getwd()
5 setwd("F:/RFS/Chapter1/")
6
7 set.seed(370)
8 x <- runif(50000, min=10, max=20)
9

10 head(x)
11 tail(x)
12
13 length(x)
14
15 mean(x)
16 median(x)
17
18 var(x)
19 sd(x)
20 IQR(x)
21
22 min(x)
23 max(x)
24 quantile(x)
25
26 mean(x, trim=0.05)

9

27 quantile(x, 1:100/100)
28
29 png("01boxplot.png",height=4,width=4,units="in",res=600)
30 par(cex=0.8,cex.lab=0.8,cex.axis=0.8)
31 boxplot(x)
32 dev.off()
33
34 png("01histogram.png",height=4,width=4,units="in",res=600)
35 par(cex=0.8,cex.lab=0.8,cex.axis=0.8)
36 hist(x)
37 dev.off()

What does this script do? The first two lines are comments. The com-
ment character is the hash symbol, #. Anything on the line following the #octothorpe
is ignored by R. Commenting your script is a very good idea; it makes the
script more understandable to everyone. It also allows you to return to the
script, understanding your logic. It may help to think of the comments as the
outline for your analysis.

The fourth line determines your working directory. 7 If you save thisworking directory
script by pressing Ctrl+s, it will be saved in that directory. If you specify a
datafile or save a picture, it will be saved in that directory, unless you spec-
ify a path to the new directory. It is good practice to set, as your working
directory, your current project directory. That will help ensure all scripts,
data files, and pictures are easily available. The fifth line sets the working
directory. The one parameter is the path to the directory. That path can be
relative (to the current working directory) or absolute. Line 5 provides an
absolute path to the directory.8

It is good practice, if you are working on more than one computer,
or are collaborating with other researchers, to have setwd() lines for each
computer, then comment out the lines you do not need with # symbols.

The seventh line sets the random number seed, which guarantees yourrandom numbers
dataset will be the same as mine. No computer is able to produce random
numbers; they produce ‘pseudo-random’ numbers. The algorithm to pro-
duce the numbers varies from system to system, but they all are based on a
number called the seed. Changing the value of the seed will change the seriesseed
of random numbers produced. If a seed is not specifically set, then the com-
puter will usually use the current time as the seed. This is useful if you want
your trials randomized. It is not if you need to replicate the results. Thus,

7In general, if a Windows™ command uses Ctrl, the corresponding MacOS™ command
will use Command. There are a few exceptions to this, however.

8We know it is an absolute path since it starts with the drive letter.

10

setting a seed allows the results in this book to correspond to the results you
get, allowing you to check your work.

The next line creates a variable named ‘x’ and puts 50,000 uniform
random numbers, ranging from 10 to 20, in the variable x.9 In the language
of probability, x is a vector of 50000 realizations of a random variableX, such
that data

X iid∼ U (10,20)

The ‘r’ in runif indicates its random aspect; the ‘unif,’ the uni-
form distribution. A few other common distributions include norm (Normal
or Gaussian distribution), t (Student’s t-distribution), and exp (Exponen-
tial distribution). Each of the other random number generator distributions
have different options, see Appendices A and B, and well as the R Help for
specifics.10

The next line displays the first six values of x — called the head. The head and tail
tail is the last six values. Had I wanted to display the first 15 values, I would
run head(x, 15). Doing things like helps check that your script is giving
you what you expect. I expect this vector to contain 50,000 values between
10 and 20. Scanning the vector tells me that I appear to be getting something
like that. The ability to examine the data is one reason why I saved it to a
variable. Another reason is that I can now perform an analysis on the same
data multiple times.

Line 13 displays how many elements are in x — a.k.a. the sample size.
In statistical notation, the sample size is usually represented by the variable
n. As such, you may frequently see in programs a line such as:

n <- length(x)

The next several lines find the following information about the data stored statistics
in x: mean x, median x̃, variance s2, standard deviation s, interquartile range

9The assignment operator in R is not the equals sign, =, it is the left-arrow <-, a less-than
sign and a hyphen. With that said, I have yet to run into problems using an equals sign in R.
This book will adhere to using the standard <-.

10This is as good a place as any to introduce the R Help and R Search functions. If
you know the actual command or statement, but you forget its specifics, type a question
mark followed by the command in quotation marks(for example, ?"rnorm"). However,
if you do not know the actual command, but you know a word close to it or what it does,
type two questions marks followed by the word or words in quotation marks (for example,
??"random number").

11

Figure 1.3: The results of initial graphical analysis of the random uniform dataset. Left
Panel: Box-and-whiskers plot. Right Panel: Histogram.

(IQR), minimum value, maximum value, the five-number summary (quar-
tiles 0 through 4), the 5%-trimmed mean, and all 100 percentiles.11

Note the following subtle points. First, I named the data vector x,
which is lower case. The vector contains 50,000 realizations of a random
variable; i.e., the vector is data. Second, the statistics calculated on x aredata
lower case, too. They are realizations of random variables, themselves.

Lines 29–32 plot the data as a box-and-whiskers plot (Figure 1.3, left),
which displays the median (heavy bar in center) and Quartiles 1 and 3 (thebox plot
ends of the central box). It also displays bars at either the minimum and
maximum values or, if there are outliers (signified by dots on the box-and-
whiskers plot), at the data value just inside the fences.12 There are no outliers
in this dataset, so the upper bar is the maximum value in the dataset and the
lower bar is the minimum value in the dataset. Your box-and-whiskers plot
should look exactly like that in Figure 1.3, Left Panel. Note that lines 29

11Where quartiles divide the dataset into 4 equal quarters (hence ‘quartile’), percentiles
divide the dataset into 100 equal parts. ‘Equal’ in this sense is number of elements. Note,
however, that equal is not truly equal unless the number of elements in a dataset has certain
properties; it means ‘approximately equals.’

12The inner fences are the boundary between “acceptable” values and “outliers” in the
data. The lower inner fence is Q1 − 1.5× IQR; the upper, Q3 + 1.5× IQR.

12

and 32 work together to save this graphic to your computer in your working
directory as the file 01boxplot.png. saving graphics

The histogram (lines 34–37) separates the data into bins of equal width
(as a default) and plots the frequency of data in each bin. Your histogram histogram
should look like Figure 1.3, Right Panel. As the data comes from a Uniform
distribution, we expect the histogram to be flat. All bumpiness is due to the
inherent randomness of sampling and the small sample size.13

1.2.4 Step 4: Save the script If this were an analysis you used for your
research, you would definitely want to save it. Saving the script is rather
straight-forward: File | Save. If you do not see the Save option, then
the active sub-window is not the script. Click on the script window and retry
the save procedure.14 save script

Save this script as s1intro.R in the Chapter1 folder.

1.3: A second example

Let us have another example. In this example, let us analyze data imported
from the Internet. In the previous example, we created our vector of data
using the runif() function. Here, we will use the read.csv() function to
import the data. import

Note: R is able to load many different data types. One of the most com-
mon data formats is the comma-separated variable format (.csv). An-
other is the tab-delimited format (.txt). Data stored in either of these
two formats are more accessible than data stored in proprietary formats,
since any statistical program (and any word processing program) can
open them. Natively, R cannot open data stored in Stata’s™dat format,
Excel’s™.xls or xlsx formats, or any other proprietary format. How-
ever, loading the foreign package with library(foreign) makes avail-
able commands allowing you to import data in most all file formats.

13Technically, the histogram is an approximation of the probability density function (pdf).
The pdf is a ‘formula’ for the distribution (it gives the likelihood of a specified value). Dif-
ferent distributions have different pdfs and (therefore) different expected histograms. As it
is an approximation, the histogram will not be the pdf; it will only approximate it. Better
approximations occur with larger sample sizes.

14In Windows™, you can use Ctrl + s; in MacOS™, Command + s.

13

For this example, let us demonstrate more capabilities by using a re-
mote datafile. Its address is

http://rfs.kvasaheim.com/data/positioningtubes.csv

The data consist of a series of length measurements of positioning tubes man-
ufactured by a leading company. Looking at the data, you notice that the first
row is the word“length.” This is the name of the variable.

Here is the script.

1 ### Filename: s2intro.R
2 ### Purpose: simple analysis of the lengths
3 ### of positioning tubes produced by Company XY
4
5 ### Preamble
6
7 setwd("F:/RFS/Chapter1/")
8 #setwd("E:/CompanyXY/")
9 #setwd("C:/Consulting/CompanyXY/")

10
11
12 # Access an external function
13 source("http://rfs.kvasaheim.com/Rfctns/means.R")
14
15 # Load and attach data
16 tube <- read.csv("http://rfs.kvasaheim.com/data/positioningtubes.csv")
17 attach(tube)
18
19 # What is the variable’s name?
20 names(tube)
21
22
23 ### Begin analysis
24
25 # Central Tendency
26 mean(length)
27 means(length,type="geometric")
28 means(length,type="harmonic")
29 median(length)
30
31 # Spread
32 sd(length)
33 var(length)
34 IQR(length)
35
36
37 ### Create the graphics
38 boxplot(length, main="Boxplot of Positioning Tube Length",
39 ylab="Positioning Tube Length [cm]")
40
41 hist(length, main="Histogram of Positioning Tube Length [cm]",
42 xlab="Positioning Tube Length")

14

Figure 1.4: The results of initial graphical analysis of the positioningtube dataset.
Left Panel: Box-and-whiskers plot. Right Panel: Histogram. Note the difference in his-
togram shapes between this dataset and the previous. Also note how that difference is
reflected in the box-and-whiskers plot.

Note that the first few lines are comments giving information about
the file, the analysis, and the data. After that, we get and set the working
directory. Since I use this file on three computers, I have three different
setwd() commands, one for each computer, with two commented out.

Now, I know I will need to calculate the geometric mean of the data.
R does not have such a function in the base package, so I will import the
function from the Internet. The command is source(), with the filename
being the argument.

Next, we load the data using the read.csv() function. Alternatively,
we could have used our web browser to download the datafile to our working
directory and imported it from there. With this, the entire dataset is stored
in our variable length.

How did I know the variable was length? The line names(tube) lists �the variable names in the dataframe. Be aware: The dataframe is a variable
that contains variables. You can think of tube as a container for all variables
in the dataset.

The analysis proceeds, starting at line 23. We calculate measures of
central tendency and measures of spread. Finally, we produce a box-and-
whiskers plot and a histogram: Figure 1.4. Note how these look different

15

than the box-and-whiskers plot and histogram from the last example. Also
note that these two were displayed to your computer screen and not saved
to yout working directory. If you ran the entire script in one fell swoop, you
may not have seen the box-and-whiskers plot before the histogram replaced
it.

Note: In the previous example, I showed the default box-and-whiskers
plot and histogram. In this example, I utilize some of the available op-
tions to make the graphics more expressive. Check to see what each op-
tion does; I leave it as an exercise for you to make the graphics look the
way you prefer.

1.4: A third example

Let us perform a more in-depth analysis, which will hint at some of R’s latent
power. In this example, we will test one aspect of the appropriateness of the
two-sample t-test on data that does not meet its Normality assumption. You
may wish to skim through Chapter 6 to know what a two-sample t-test is and
why we use it.

Monte Carlo experiments are a group of simulation algorithms relyingMonte Carlo
on repeated sampling to estimate statistics. Such experiments are appropri-
ate when the equations are too difficult to derive and when computing power
is cheap — such as today. To perform Monte Carlo experiments, one should
understand the theoretical process underlying the data.

Monte Carlo experiments generally consist of three steps:

1. First, random samples need to be taken.

2. Second the test statistic needs to be calculated.

3. Finally, these two steps are repeated a large number of times.

For this example, let us test the applicability of the two-sample t-test
to two Exponentially-distributed populations. Lifetimes are frequently dis-
tributed as Exponential random variables. Thus, should we want to com-
pare the time until recidivism for two groups of released prisoners, a controltime until
group and a treated group, we will be comparing two Exponential random
variables.

16

We know (or will know) that the t-test assumes both populations are
distributed Normally. We also know that the Exponential distribution is
about as non-Normal as a distribution can be. Thus, we would expect that
the t-test would not be applicable. However, the Central Limit Theorem (see
Appendix C) tells us that distribution of the sample means converges to the
Standard Normal distribution, which is all that the t-test really needs. The
only question is: How quickly? Here, we attempt to determine if n = 30 is
large enough.

One requirement for a test to be appropriate for the problem at hand
is for the p-values to be Uniformly distributed. If this is not true, the test is p-values
not a fantastic test, and perhaps something else should be used in its stead.

Thus, this Monte Carlo experiment will determine if the p-values of
a t-test comparing two Exponentially-distributed random variables are Uni-
formly distributed (between 0 and 1). U (0,1)

1 ### Filename: script2.R
2 ### Purpose: application of Monte Carlo to
3 ### determining if one should use the t-test
4 ### when both populations are Exponentially
5 ### distributed and the sample size is n=30.
6
7
8 ### Preamble
9

10 setwd("F:/RFS/Chapter1/")
11 set.seed(370)
12
13
14 ### The experiment
15
16 # Initialize variables
17 p <- numeric() ## Vector of p-values
18 n <- 30 ## Sample size
19 B <- 1000000 ## Number of iterations
20
21 # The loop
22 for(i in 1:B) {
23 x <- rexp(n, rate=2) ## Generate X
24 y <- rexp(n, rate=2) ## Generate Y
25 p[i] <- t.test(x,y)$p.value ## Get p-value
26 }
27
28 # The analysis
29 hist(p, main="Histogram of p-values", xlab="p-value")
30 abline(h=B/20, col=4, lty=2)
31
32 ks.test(p, punif)

17

Figure 1.5: Histogram of p-values from the Monte Carlo experiment. Note that the first
bar is lower than one would expect under the uniformity assumption. As such, we can
conclude that the test is not appropriate (although it is not as bad as we expected).

This script starts out the same way as a usual script: Comments de-
scribe the script, the working directory is set, and the random-number seed
is set. The next block of lines initializes three important variables.

The variable p is created to hold all of the calculated p-values from
the test. The variable n is our sample size of 30. The variable B is the number
of times we perform the experiment (the number of trials). The variable Btrials
should be as large as possible, remembering that computers are slow. Larger
values of B produce approximations with better precision. The rule of thumb
is that to increase the certainty by one digit, you will have to increase the
number of trials by a factor of 100. Thus, B <- 1000000 should give propor-
tion estimates accurate to 3 digits.

The next block is the looping block (Lines 22–26). Inside the loop
(lines 23–25) is the experiment. We loop through each experiment B times.
Each experiment consists of taking two samples of size n from an Exponen-
tial distribution with rate λ = 2 (which corresponds to a mean of 1

2). A two-
sample t-test is performed on those two samples, and the calculated p-value
is stored in the variable p (at position i). The loop section is the actual Monte
Carlo experiment. Everything else just allows us to use the experiment.

Now that we carried out the experiment, we plot a histogram of the
results, plot a horizontal line on the graph, and determine if the histogram is

18

Uniform. Figure 1.5 is this plot. Note that the histogram is vaguely uniform
— except for the first bar, which is much smaller than one would expect.
Because of this, I would conclude that the p-values are not Uniformly dis-
tributed; that is, the test is not appropriate in this case.

If we are not comfortable with testing graphically, we can use the
Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test determines if two K-S Test
distributions are significantly different. The null hypothesis is that the two
distributions are the same (or that the sample came from the specified dis-
tribution). According to the Kolmogorov-Smirnov test, the p-values are not
Uniformly distributed (D = 0.0080;p � 0.0001). As such, we can conclude
that we need a sample size larger than n = 30 to use the t-test on this data.

It is interesting that the histogram appears to be vaguely Uniform ex-
cept for the shorter-than-expected first bar. As an extension, you may wish
to increase the number of trials to see if that dip goes away.

Do not forget to save this script in your Chapter1 folder.

1.5: Conclusion

In this chapter, you have learned several advantages to using the R statistical
environment. You also learned how to download and install R on your com-
puter (or USB drive); how to type in two simple, yet informative, scripts; and
how to use help and search functions to locate information about statements,
commands, or functions in R.

19

1.6: End of Chapter Materials

1.6.1 R Functions In this chapter, we were introduced to several R func-
tions that will be useful in the future. These are listed here.

Statistics:

IQR(v) This returns the Inter-Quartile Range of the provided vector of val-
ues. The IQR is defined as the third quartile less the first quartile:
Q3 −Q1.

ks.test(x,y) This performs a Kolmogorov-Smirnov test, which determines if
the two provided samples (x,y) come from the same distribution. This
test is often used to determine if a sample is Normally distributed, in
which case x will be the data and y will be pnorm.

length(v) This function returns the number of elements in the vector v, usu-
ally a vector of data.

max(v) This returns the largest values in the provided vector of values.

mean(v) This returns the arithmetic mean of the provided vector of val-
ues. An optional parameter trim= allows you to calculate the trimmed
mean.

means(v, type) This returns the mean of the provided vector of values. The
type of mean returned is specified with the type= parameter. Pos-
sible values include "arithmetic" (the default), "geometric", and
"harmonic".

This function must be imported from the Internet using the source()
function. The parameter trim= is also supported (see mean(v), above).

median(v) This returns the median of the provided vector of values.

min(v) This returns the smallest value in the provided vector of values.

quantile(v) This, by default, returns the following values from the provided
vector of values: Q0,Q1,Q2,Q3, and Q4. The options parameter probs
allows you to select the percentiles you wish calculated. Thus, the com-
mand quantile(v, c(0.04,0.67,0.99)) returns the 4th, 67th, and
99th percentile in the provided variable v.

20

sd(v) This returns the sample standard deviation of the provided vector of
values. It equals the positive square root of the sample variance.

t.test(·) This function preforms a t-test of the provided data. The four types
of t-tests can be specified as

t.test(x, mu=) 1-sample t-test

t.test(x,y) 2-sample t-test, unequal variances

t.test(x,y, var.equal=TRUE) 2-sample t-test, equal variances

t.test(x,y, paired=TRUE) 2-sample, paired t-test

var(v) This returns the sample variance of the provided vector of values.

Probability:

set.seed(x) This command specifies the starting random number seed.

rexp(n) This command produces n random numbers drawn from an Expo-
nential distribution, Exp(λ). An optional parameter allows you to spec-
ify the rate as something other than the default of 1.

runif(n) This command produces n random numbers drawn from a Uni-
form distribution, U (0,1). Optional parameters include min and max,
which specify a minimum and a maximum value.

Note: Appendices A and B cover several important probability distribu-
tions.

Graphics:

abline(·) This produces lines on an active plot. Options include producing
a horizontal line (h=), a vertical line (v=), or an oblique line with an
intercept (a=) and a slope (b=).

boxplot(v) This produces a standard box-and-whiskers plot of the provided
vector of values. By default, the fences are located at Q3 + 1.5IQR and
Q1 − 1.5IQR. Outliers (those values beyond the fences) are identified
with circles on the plot. You can alter both of these features.

21

hist(v) This produces a histogram of the provided vector of values. Optional
parameters allow you to specify the breaks, as well as specify that you
wish a probability (relative frequency) histogram in lieu of the default
frequency histogram.

Mathematics:

+ This is the addition character in R.

- This is the subtraction character in R.

* This is the multiplication character in R.

/ This is the division character in R.

∧ This is the “raise to the power of” character in R.

Programming:

getwd() This command tells you the current working directory—the default
folder in which the script will be saved and in which the data files will
be read.

setwd(p) This command defines the current working directory using path
p, which can be either absolute or relative to the current working di-
rectory. Thus, setwd(F://RFS/Chapter1/), which is an absolute
path (the drive letter is specified), will make that folder the current
working directory, while setwd(../../RFS/Chapter1/), a relative
path, will set as the current working directory the folder Chapter1, a
subflder of folder RFS, which is two levels above your current working
directory.

A Windows™ note: Windows™ paths usually use the backslash (\),
which is non-standard. To use Windows paths, either change the back-
slashes to slashes, or double all or the backslashes. Thus, the following
are both acceptable Windows paths:

F:/RFS/Chapter1/

F:\\\\RFS\\Chapter1\\

22

I usually use the first form, as it looks better to me, is easier to type,
and is more standard across operating systems.

source(p) This command allows you to run external scripts. These external
scripts may be functions located locally (on your machine) or remotely
(on the Internet).

23

1.6.2 Exercises and Extensions This section offers suggestions on things
you can practice from just the information in this chapter. Completing these
extension exercises requires judicious use of the help and search functions in
R, as well as some trial and error — both things I use quite frequently.

For each of the following problems, please save the associated R script
in the chapter folder as ext0x.R, where x is the problem number.

Summary:

1. What do the following R functions do?

a) mean(x)

b) sd(x)

c) var(x)

d) median(x)

e) quantile(x,0.25)

f) IQR(x)

g) abline(h=4)

2. Define replicability. Why is it important in science?

3. What is csv format? Give one advantage to saving data in csv format.

4. What is a Monte Carlo experiment?

Graphics:

5. Extending the box-and-whiskers plot graphic above (Figure 1.4, left),
make the following alterations: Change the y-axis label to “Pipe Length
[cm]”, the box-and-whiskers plot title to “Box-and-Whiskers Plot of
Pipe Lengths”, and the orientation of the axis labels to horizontal. [You
may want to check the help files on boxplot(), plot(), and par().]

6. Extending the histogram graphic above (Figure 1.4, right), make the
following alterations: Change the x-axis label to “Pipe Length [cm]”,
the histogram title to “Histogram of Pipe Lengths”, and the orientation
of the axis labels to horizontal. [You may want to check the help files
on hist(), plot(), and par().]

24

Monte Carlo:

7. Start a new session in R, open a new script, and create a random dataset
(of size 100) from the Gaussian distribution, with mean 4 and standard
deviation 15 (use set.seed(370)). [The Gaussian distribution is also
known as the Normal distribution.] Find the mean, median, and vari-
ance of the data. Save this script in your chapter folder as ext01.R.
Explain why the sample standard deviation did not equal 15 and the
sample mean did not equal 4.

8. Start a new session in R, open a new script, write a script that creates
a dataset of size one million (n = 1000000), with each element in the
dataset being a random number between 0 and 6 (set the seed to 370).
[Unless stated otherwise, we assume that ‘random’ numbers are from a
Uniform distribution.] Calculate the mean, median, and third quartile
(Q3) of the data. Save this script in your chapter folder as ext02.R.

9. Extending the previous extension, simulate rolling a fair six-sided die
by making all of those random numbers integers. [You may want to
look up the following functions: floor(), ceiling(), round(), and
sample() to determine which of them is appropriate and what other
changes you may need to make.] Again, set the seed to 370 and cal-
culate the mean, variance, and inter-quartile range. Save this script in
your chapter folder as ext03.R.

10. Modify s3MonteCarlo.R to test if a sample size of n = 500 is suffi-
ciently large so that the t-test is appropriate. Save this script in your
chapter folder as ext05.R.

11. Modify s3MonteCarlo.R to test if a sample size of n = 30 is suf-
ficiently large so that the t-test is applicable for testing the equality
of means between two Gamma distributions. Use a shape parameter
of a = 5 and a rate parameter of b = 2. [Check the R help files for
rgamma().] Save this script in your chapter folder as ext06.R.

The Gamma distribution is a generalization of the Exponential distri-
bution. As such, it also is good for modelling survival times.

25

1.6.3 Applied Research This section offers some applied research works
that are connected with the topics in this chapter.

• Walter W. Hudson (1974). “Casework as a Causative Agent in Client
Deterioration: A Research Note on the Fischer Assessment.” The Social
Service Review 48(3): 422–49.

• Eduardo Leoni (2005). “Analyzing Cross-Country Survey Data: Results
from Monte Carlo Experiments.” Paper presented at the annual meet-
ing of the The Midwest Political Science Association, Palmer House
Hilton, Chicago, Illinois (April 7, 2005).

• David L. Lewis and David L. Bodde (1984). “Understanding Political
Risk in Investment Planning.” Journal of Policy Analysis and Manage-
ment 3(4): 544–60.

• John Loizides and Efthymios G. Tsionas (2004). “Dynamic Distribu-
tions of Productivity Growth in European Railways.” Journal of Trans-
port Economics and Policy 38(1): 45–75.

• David A. M. Peterson (2009). “Campaign Learning and Vote Determi-
nants.” American Journal of Political Science 53(2): 445–60.

• William B. P. Robson and William M. Scarth (1998). “Federal Debt
Reduction: Choosing Paths.” Canadian Public Policy 24(3): 356–62.

• Branislav L. Slantchev (2004). “How Initiators End Their Wars: The
Duration of Warfare and the Terms of Peace.” American Journal of Polit-
ical Science 48(4): 813–29.

26

1.6.4 References and Additional Readings This section provides a list
of statistical works. Those works cited in the chapter are here. Also here are
works that complement the chapter’s topics.

• Emmanuel Paradis (2005). “R for Beginners.”
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

• The R Development Core Team (2011). R: A Language and Environment
for Statistical Computing.
http://cran.r-project.org/doc/manuals/fullrefman.pdf

• William N. Venables and David M. Smith (2011). An Introduction to R.
http://cran.r-project.org/doc/manuals/R-intro.pdf

§ § §

Many more reference manuals are available for download from:
http://cran.r-project.org/other-docs.html

Avail yourself of them.

§ § §

Furthermore, area experts have come together to ensure that their area is
most up-to-date with respect to statistical analysis. The documents that out-
line the available packages are called “Task Views.” Currently, there are 28
task views, ranging from Bayesian analysis to Time Series analysis. The en-
tire list is located at

http://cran.r-project.org/web/views/

27

