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At their very heart, statistics are just numbers, functions
of the data. However, knowing the value of a test statis-
tic tells us little about the parameter of interest. For in-
stance, let us suppose x = 5 for a dataset. Of course our
estimate of the expected value is µ = 5; however, we do
not know the precision of our estimate. For estimates on
precision, we need to know the probability distribution of
the test statistic we just measured — or at least the value
of σ and have a large n.

When test statistics are first created, the statisticians
attempt to create them in such a way that they have a
known distribution. For instance, if we knowX ∼ N (µ,σ2),
then we know X ∼ N (µ,σ2/n) and (n− 1)S2/σ2 ∼ χ2

n.

Thus, to understand the concept of confidence in-
tervals, the relationships between distributions, and the
reason behind certain test statistic formulas, it becomes
helpful to understand some of the more popular distri-
butions. This appendix covers many of the most popular
discrete distributions.

§ § §

I roll two fair, six-sided dice. What is the probability that
the sum of the two outcomes is 11? Casinos pay 15-to-1
odds for a person rolling an 11 on a given roll. What is
the casino’s expected win per $10 bet?
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A.1: Discrete Distributions

All discrete distributions have a sample space of countable size. Thus, work- countable
ing with them frequently requires knowledge of series representation. With
that said, we can start with simple cases to illustrate some of the more im-
portant aspects of discrete distributions.

Let us begin with a toy example: a fair, six-sided die that I roll once.
As it is fair and six-sided, we can write out the probability for each of the six fair
possible outcomes:

Face; d 1 2 3 4 5 6

Probability; P [D = d] 1/6 1/6 1/6 1/6 1/6 1/6

With this table (one way to represent the probability mass function), we
know everything we need to know about the distribution. We know the ex-
pected value: expected value

E [D] :=
∑
d

d P [D = d]

=
6∑
d=1

d P [D = d]

= 1
(1

6

)
+ 2

(1
6

)
+ 3

(1
6

)
+ 4

(1
6

)
+ 5

(1
6

)
+ 6

(1
6

)
= 21

(1
6

)
µ = 3.5

We know the variance: variance

V [D] :=
n∑
d=1

P [D = d] (d −E [D])2

=
6∑
d=1

P [D = d] (d − 3.5)2
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=
(1

6

)
(1− 3.5)2 +

(1
6

)
(2− 3.5)2 +

(1
6

)
(3− 3.5)2 +

(1
6

)
(4− 3.5)2

+
(1

6

)
(5− 3.5)2 +

(1
6

)
(6− 3.5)2

σ2 = 1.3467

We know the standard deviation:standard deviation

SD[D] :=
√
V [D]

=
√

1.3467

σ = 1.1605

We know the probability of a 1 or a 2 coming up:union

P

[
D ∈

{
1,2

}]
= P [D = 1] +P [D = 2]

=
1
6

+
1
6

=
1
3

We know the probability of an outcome that is both odd and greater than 3:intersection

P

[
D ∈

{
1,3,5

}
∩

{
4,5,6

}]
= P

[
D ∈

{
5
}]

= P [D = 5]

=
1
6

We know the probability of a 1 or a 2 not coming up:negation

P

[
D <

{
1,2

}]
= 1−P

[
D ∈

{
1,2

}]
= 1− 1

3

=
2
3

Et cetera. The probability mass function fully defines the distribution.pmf
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Example A.1: Let us be given that a random variable has the following
probability mass function:

x 1 2 3 4

P [X = x] 0.25 0.15 0.05 ???

With a sample space of S =
{
1,2,3,4

}
. Calculate the probability of X = 4.

Also, calculate the mean, median, mode, variance, standard deviation, skew,
and kurtosis of X.

Solution: We know that the probability of observing a result in the sam-
ple space is exactly 1. Thus, we know P [X = 4] = 0.55. With that, we can unity
calculate the mean

mean

E [X] :=
4∑
x=1

P [X = x] x

= 1(0.25) + 2(0.15) + 3(0.05) + 4(0.55)

= 2.9,

the median, x̃, median

x̃ =
{
x̃ s.t. P [X ≤ x̃] ≥ 0.500 ∩ P [X ≥ x̃] ≥ 0.500

}
= 4,

the mode mode

Mode(X) = argmaxx P [X = x]

= 4,

the variance, σ2, variance

V [D] :=
4∑
x=1

P [X = x] (x −E [X])2

= 0.25(1− 2.9)2 + 0.15(2− 2.9)2 + 0.05(3− 2.9)2 + 0.55(4− 2.9)2

= 1.69,

the standard deviation, σ , standard deviation

SD(X) :=
√
V [X]

=
√

1.69 = 1.3,

517



the skew, γ1,skew

γ1(X) := E

[(X −µ
σ

)3]
=
E

[
X3

]
− 3µE

[
X2

]
+ 2µ3

σ3

=
38− 3(2.9)10.1 + 2(2.9)3

(1.3)3

= −21.001,

The excess kurtosis, γ2,excess kurtosis

γ2(X) :=
E

[
(X −µ)4

]
σ4 − 3

=
4.1617
2.8561

− 3

= −1.542873

Since the excess kurtosis is less than zero, we know the shape of the distribu-
tion is flatter than that of the Normal distribution.

�

The probability mass function (pmf) is not always written in tabular form.
Frequently, it is written as a function over a given sample space. This nextsupport set
example show that one can, at times, convert a functional pmf to a tabular
pmf. Note, however, that it is not always possible (or desirable) to do this.
Often, the sample space is infinite (but countable). In these cases, using the
calculus of series is necessary to derive means, variances, etc.

Example A.2: Let us assume that a random variable has the following prob-
ability mass function over the sample space S =

{
1,2,5,10

}
:

f (x) =
5

9x

Calculate the mean, median, mode, variance, standard deviation, skew, and
excess kurtosis of X.
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Figure A.1: A plot of the probability mass function for the discrete distribution described
in the example.

Solution: Note that the pmf is provided in functional form, as opposed to
tabular form. We can, if we so desire, write it in tabular form:

x 1 2 5 10

P [X = x] 5
9

5
18

1
9

1
18

This form may make it easier to perform the necessary calculations. The
answers are:

E [X] = 2.222

X̃ = 1

Mode(X) = 1

V [X] = 5.062

SD(X) = 2.250

γ1(X) = 2.415

γ2(X) = 5.242

Furthermore, Figure A.1 is a plot of the probability mass function. Note its
right (positive) skew. �
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§ § §

These formulas describe important aspects of distributions. The mean pro-
vides a measure of the center of the distribution. The variance provides a
measure of how well this mean value summarizes the entire dataset. The
skew and kurtosis provide measures of how far the distribution is from Nor-
mal.

These distances from Normality will become important in the future
as they give some hint to the sample size needed before the asymptotic results
of the Central Limit Theorem hold (see Appendix C).CLT

The remainder of this appendix is dedicated to some of the named dis-
tributions. These distributions are named because statisticians come across
them time and again when modeling reality.
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A.2: Bernoulli

One can easily argue that the Bernoulli distribution is a basis of all discrete
distributions. A Bernoulli trial is a dichotomous outcome from a single ex- dichotomous
periment. For example, the number of heads resulting from flipping a coin
once is a Bernoulli random variable.

• Symbol:
X ∼ Bern(π)

• R stem:
binom

• Probability mass function:

f (x;π) = πx (1−π)1−x

• Cumulative distribution function:

F(x;π) =


0 x < 0
1−π 0 ≤ x < 1
1 1 ≤ x

Figure A.2: The plot of the Bernoulli distribution Bern(π = 0.15).
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A.2.1 Parameters

π ∈ (0,1) success probability

Historical note: This distribution is named after the Swiss mathematician
Jakob Bernoulli, who also proved one of the most important theorems in
probability: The Central Limit Theorem. In this 17th century book Ars Con-
jectandi, published posthumously, Bernoulli laid the foundations of proba-
bility theory.

A.2.2 Statistics

Mean: π

Median:


0 π < 1

2
[0, 1] π = 1

2
1 π > 1

2

Mode:


0 π < 1

2{
0,1

}
π = 1

2
1 π > 1

2

Variance: π(1−π)

Inter-Quartile Range:
{

1 1
4 ≤ π <

3
4

0 otherwise

Sample space:
{
0,1

}
Skew: 1−2π√

π(1−π)

Excess Kurtosis: 1−6π(1−π)
π(1−π)
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A.2.3 Related Distributions Let us be given the following:

X ∼ Bern(π1) Y ∼ Bern(π2) Zi
iid∼ Bern(π),∀i ∈

{
1,2, . . . ,n

}
Then,

• XY ∼ Bern(π1π2).

•
∑n
i=1Zi ∼ Bin(n,π).

For practice, let us prove the first relationship.

Theorem A.1. Let X ∼ Bern(πx) and Y ∼ Bern(πy), with X and Y independent
of each other. If we define W := XY , then W ∼ Bern(πxπy).

Proof. One way of proving a random variable has a specific distribution is to
show that the probabilities match. Note that W has two possible outcomes,
0 and 1. Thus, W is a Bernoulli variable. All that remains is to show that the
probability of W = 1 is πxπy .

For W to equal 1, both X and Y must be 1. The probability of this
happening is P [X = 1∩Y = 1] = P [X = 1]P [Y = 1], because X and Y are in-
dependent. Thus, P [W = 1] = πxπy . independent

Writing this out, we have

P [W = w] =
{
πxπy w = 1
1−πxπy w = 0

This is the probability mass function for a Bernoulli random variable with
success probability πxπy .
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A.3: Binomial

The Bernoulli distribution is the basis of all discrete distributions. The Bi-
nomial is the sum of n independent Bernoulli trials with a constant success
probability.

• Symbol:
X ∼ Bin(n,π)

• R stem:
binom

• Probability mass function:

f (x;n,π) =
(
n
x

)
πx (1−π)n−x

• Cumulative distribution function:

F(x;n,π) =
x∑
i=0

f (i;n,π)

Figure A.3: The plot of two distributions from the Binomial family, Bin(n = 10,π).
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A.3.1 Parameters

n ∈N number of Bernoulli trials
π ∈ (0,1) success probability in each trial

Historical note: This distribution is called the Bernoulli distribution in
the francophone world and the Binomial distribution elsewhere. It is called
the Bernoulli distribution because Jakob Bernoulli explored it in the founda-
tional work Ars Conjectandi. It is called the Binomial distribution because it
makes use of the binomial coefficient,

(n
x

)
.

A.3.2 Statistics

Mean: nπ

Median: Either bnπc or dnπe (depending)

Mode: Either b(n+ 1)πc or d(n+ 1)π − 1e (depending)

Variance: nπ(1−π)

Inter-Quartile Range: —

Sample Space:
{
0,1,2, . . . ,n

}
Skew: 1−2π√

nπ(1−π)

Excess Kurtosis: 1−6π(1−π)
nπ(1−π)
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A.3.3 Related Distributions Let us be given the following:

X ∼ Bin(nX ,π) Y ∼ Bin(nY ,π)

Then,

• X +Y ∼ Bin(nX +nY ,π)

• If the number of trials, n, is large enough, then X ·
∼ N

(
nπ,nπ(1 −π)

)
.

This is a direct result of the Central Limit Theorem (Appendix C). The
approximation is always better if π ≈ 0.500. A rule of thumb for “large
enough” in this case is that both nπ ≥ 5 and n(1−π) ≥ 5.

A.3.4 Discussion The Binomial distribution is defined as the sum of n
independent and identically distributed Bernoulli distributions, each with aiid
success probability of π. This fact makes this distribution more useful than
first appears. There are five requirements for an experiment to be a Binomial
experiment. Any deviation from these requirements results in a different dis-requirements
tribution:

1. The number of trials, n, is known

2. Each trial has two possible outcomes

3. The success probability, π, is constant

4. The n trials are independent

5. The random variable is the number of successes in those n trials

Example A.3: A recent 20-year average (1991–2010) suggests to us that the
annual probability of at least one hurricane making landfall in Louisiana
is π = 0.55. If this is true, what is the probability of a hurricane hitting
Louisiana in exactly three of the next four years?

Solution: Let us define X as the event of at least one hurricane hitting Louis-
iana in a given year. This means we would like to calculate P [X = 3].

The next question concerns the distribution of X. Why is X a Binomial
random variable? It matches the five requirements. The number of trials is
known (n = 4); each trial has two possible outcomes (hurricane hits or not);
the success probability is constant (π = 0.55); the trials are independent (the
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number of hurricanes hitting this year does not depend on the number last
year); and the random variable we are measuring is the number of successes
(number of years in which at least one hurricane hits Louisiana).

Thus, we have that X ∼ Bin(4,0.55). At this point, this problem is a
straight-forward probability calculation with n = 4, x = 3, and π = 0.55:

P [X = 3] =
(
4
3

)
0.553 0.451

= 4(0.166375)(0.45)

= 0.2995

Thus, there is approximately a 30% chance that a hurricane will make land-
fall in Louisiana in exactly three of the next four years. Additionally, there is
approximately a 9.2% chance that a hurricane will make landfall in Louisiana
in each of the next four years. I leave it as an exercise for you to calculate this
number. �

Using R to make this calculation is straight-forward:

dbinom(3, size=4, prob=0.55)

The d in dbinom indicates you wish to calculate the probability that the ran-
dom variable equals a single value. The binom indicates you wish to calcu-
late that probability using the Binomial pmf. This function requires three
pieces of information, x, n, and π. R calls them x, size, and prob, respec-
tively.

A.3.5 Comparing Two Binomials* Let us suppose we have two Binomi-
ally distributed random variables

X ∼ Bin(nx,πx) Y ∼ Bin(ny ,πy)

and we wish to determine if πx = πy . It is natural to look at the number of
successes (also known as the ‘realization’) of X and of Y and compare them. data

When n is large and π ≈ 0.500, this will be very straight-forward, as
one can use the Normal approximation described above (v.s. Related Distri-
butions) and the usual t-test (Section 6). However, when either nπ < 5 or
n(1−π) < 5, this approximation will not work well, and you will have to use
other methods.
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It would be nice if we had a test statistic, perhaps the difference be- test statistic
tween the two realizations, and an associated distribution; however, the dif-
ference of two Binomial random variables is not another Binomial random
variable. In fact, we currently have no method for determining this distribu-
tion exactly, without making additional assumptions.

We can, however, use Monte Carlo methods to estimate (to an arbi-
trary degree of precision) the p-value corresponding to the test that the two
distributions have the same success probability, π.

Example A.4: Continuing the previous hurricane example, let us note that
Mississippi and Alabama both have approximately the same length of coast-
line. Thus, we may expect the probability of a hurricane making landfall
in Mississippi being the same as for Alabama. However, in the 20-year pe-
riod of 1991–2010, four hurricanes made landfall in Alabama, but only 2 insample
Mississippi. Are these numbers different enough that we can conclude the
probability of a hurricane making landfall in Alabama is different than in
Mississippi?population

Solution: We explicitly make the assumption that the probability of a hur-
ricane landfall in a given year is independent of a hurricane landfall in a
previous year. Thus, our null hypothesis isnull hypothesis

H0 : πMS = πAL

For our sample, pMS = 0.1 and pAL = 0.2. Thus, the pooled proportion is
p = 0.15. The calculation of the pooled proportion is made easier as the
sample sizes are identical for the two samples (n = 20 years for each). The
general formula for the pooled proportion is

pp =
(n1 p1) + (n2 p2)

n1 +n2

This is just a weighted average.weighted average

Unfortunately, we do not have a test for comparing the means of two
Binomial distributions, even if the success probabilites are the same. Further-
more, we cannot use the Normal approximation, as p 0 0.500 in either case
and n is small. Thus, we will have to resort to using Monte Carlo methods toMonte Carlo
approximate the p-value corresponding to our null hypothesis and our data.

To do this, we need to understand the ‘Mississippi distribution’ and
the ‘Alabama distribution.’ Again, if we define X as the event of a hurricane
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making landfall in a specific year, then the Mississippi distribution (under
the null hypothesis) is

XMS ∼ Bin(20,0.150)

The 20 comes from the number of years we are observing. The π = 0.150
comes from the null hypothesis that the probability of a hurricane making
landfall in Mississippi equals that of Alabama, and both are equal to some
common (pooled) landfall probability, 0.150.

Under the null hypothesis, the Alabama distribution is the same as
the Mississippi distribution as the number of data years is the same (and the
common landfall probability is the same):

XAL ∼ Bin(20,0.150)

Were the sample sizes (years) different, then the Alabama distribution would
reflect that. sample size

Now that we know the distribution of the two hurricane landfalls, we
need to create a test statistic. As we are not calculating the distribution for test statistic
the test statistic, we can select an intuitive one. Let T S be the difference in
landfalls between Mississippi and Alabama. In symbols,

T S := XAL −XMS

This is not the only test statistic we could have used. We could have used the
difference in their squares, the square of their difference, the tangent of their
difference, etc. The key is that we need to create a test statistic that reflects key
what we want to test: Is the difference in their probabilities different from
zero? Any test statistic that reflects this question is acceptable. The one I
chose is merely simpler to interpret.

Now that we understand our two landfall distributions and have cre-
ated a test statistic, we can perform Monte Carlo to estimate the distribution
of the test statistic. The steps are similar to all other Monte Carlo experi- steps
ments we have performed in the past:

1. Initialize variables

2. Perform loop

a) Draw from the Mississippi distribution

b) Draw from the Alabama distribution

c) Calculate the test statistic (and save it)
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3. Calculate the empirical p-value of your observed test statistic

4. Calculate the 100(1 − α)% empirical confidence interval for the test
statistic

The only new step is to calculate the confidence interval from this empirical
distribution (Step 2c). However, if one understands the meaning of a confi-
dence interval, then this step should be quite easy to understand.

The R code for this algorithm is as follows

1 set.seed(30)
2 alpha <- 0.05 # Typical alpha-level
3 trials <- 1e4 # Number of trials to run
4
5 n1 <- 20 # sample size for Mississippi
6 n2 <- 20 # sample size for Alabama
7 pp <- 0.15 # Pooled proportion
8
9 TS <- numeric() # To hold our test statistic

10
11 for(i in 1:trials) {
12 X <- rbinom(1,size=n1, prob=pp) # MS dist
13 Y <- rbinom(1,size=n2, prob=pp) # AL dist
14 TS[i] <- X-Y # Test stat
15 }
16
17 length( which(TS>2) )/trials * 2 # p-value
18 quantile(TS,c(alpha/2, 1-alpha/2)) # conf int

If you run this, you will get a p-value of 0.26 and a symmetric 95% confidence
interval of (−4,4). Thus, under the null hypothesis, we will get a test statistic
this extreme (or more so) 26% of the time. As such, we cannot reject the
null hypothesis and must conclude, at the α = 0.05 level, that there is no
significant evidence that hurricanes make landfall in Mississippi at a rate
different than in Alabama.

If we prefer to use the confidence interval to frame our conclusion,
then we see that the confidence interval tells us that, if the two likelihoods
are equal, then 95% of the time we will have a test statistic between −4 and
+4. Thus, our observed test statistic of 4−2 = 2 is not severe enough to cause
us to conclude hurricanes make landfall in Mississippi at a rate different than
in Alabama. �

I will leave it as an exercise to determine if Louisiana’s 11 years of
hurricane landfalls is statistically different from the 4 for Alabama. What
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Figure A.4: Empirical probability mass function for the difference of two Binomials corre-
sponding to the hurricane landfall distributions for Mississippi and Alabama. The region
shaded in dark orange is the rejection region corresponding to α = 0.05.

will you have to change in the script? What is the value of the new test
statistic? The answer is that there is a statistically significant difference at
the α = 0.05 level (p ≈ 0.01), with the symmetric 95% confidence interval
being (−6,6).

Note: How many significant figures should we include? The number of
trials in this Monte Carlo experiment is 1× 104, thus we should only use
4/2 = 2 decimal places. If we had used, instead, a million trials (1× 106),
we could report 6/2 = 3 decimal places. In general, if B is the number of
Monte Carlo trials performed, one can use 1

2
(
log10

)
digits.

This rule of thumb comes from the margin of error calculated for
Binomials when using a 95% level of confidence. Recall the margin of
error in this case is E = 1.96

√
π(1−π)/n. Using π = 0.50 (to be conserva-

tive), this becomes 1.96
√

(0.5)(0.5)/n ≈
√

1/n.

It is actually interesting to see the empirical distribution of the test statistic
(Figure A.4). Note that it is symmetric about zero. Thus, it did not mat-
ter if we decided our test statistic was XAL − XMS or XMS − XAL; the same
distribution would result. Also note that the distribution is not a Binomial
distribution; it takes on negative values, which is outside the sample space
for a Binomial. support set

531



A.4: Geometric

The Geometric distribution is very similar to the Binomial distribution. Both
are sums of independent and identically distributed Bernoulli random vari-
ables. However, whereas the random variable in the Binomial case is the
number of successes in n trials (assumptions 2–4), the random variable in
the Geometric case is the number of failures until the first success. Thus,
the Geometric distribution fails requirements 1 and 5 for the Binomial dis-
tribution (page 526).

• Symbol:
X ∼ Geom(π)

• R stem:
geom

• Probability mass function:

f (x;π) = π(1−π)x

• Cumulative distribution function:

F(x;π) = P [X ≤ x] = 1− (1−π)x+1

Figure A.5: A graph of the Geometric probability mass function for various values of the
success probability parameter, π.
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A.4.1 Parameter

π Success probability

Historical note: A geometric series is a series with a constant ratio between
successive terms. This is the basis for the name of this distribution. Here,
that constant ratio is 1−π.

A.4.2 Statistics

Mean: 1−π
π

Median: d −1
log2(1−π)e − 1

Mode: 0

Variance: 1−π
π2 = µ

π

Inter-Quartile Range: —

Sample Space:
{
0,1,2, . . .

}
Skew: 2−π√

1−π

Excess Kurtosis: 6 + π2

1−π

Note: π = µ
σ2 .
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A.4.3 Related Distribution

• Let Xi
iid∼ Geom(π). If we define the random variable Y :=

∑n
i=1Xi , then

Y ∼ NegBin(n,π).

Example A.5: Officer McGrowl patrols the mean streets of Stillwater, OK,
every night looking for people who are driving under the influence of alco-
hol. McGrowl hypothesizes that 60% of the drivers at 2:00am are driving
drunk. Assuming he is correct, what is the expected number of cars he will
pull over before he catches his first drunk driver? What is the probability
that he pulls over five sober drivers before his first drunk driver? If it takes
five or more traffic stops until he catches his first drunk driver, can we reject
his assumption that 60% of the drivers at 2:00am are driving drunk?

Solution: Let us define X as the number of sober drivers Officer McGruff
pulls over before he pulls over his first drunk driver. With this, we have

X ∼ Geom(π = 0.60).

Using the appropriate formulas from above, we have

E [X] =
1

0.60
− 1 = 0.6667

P [X = 5] = 0.60(1− 0.60)5 = 0.0061

To calculate the p-value, we need to calculate P [X ≥ 5]. Using the cumulative
distribution function, we have

P [X ≥ 5] = 1−P [X < 5]

= 1−P [X ≤ 4]

= 1−F(4;π = 0.60)

= 1−
(
1− (1− 0.60)5

)
= (1− 0.60)5

= 0.01024

As this value is less than our usual α = 0.05 level, we reject McGrowl’s as-
sumption about the proportion of drunk drivers at 2:00am.
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Figure A.6: A graph of the Geometric probability mass function for the Officer McGrowl
example.

A plot of the probability mass function for this particular distribution
is provided in Figure A.6, above. Note that is has strong right (positive) skew
and high leptokurtosis (positive excess kurtosis). �
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A.5: Negative Binomial (Pascal; Pólya)

The Negative Binomial distribution is an extension of the Geometric distri-
bution. The Geometric distribution modeled the number of failures until
the first success. The Negative Binomial distribution models the number of
failures until the rth success. As such, this distribution also violates require-
ments 1 and 5 for the Binomial distribution (page 526).

• Symbol:
X ∼ NegBin(r,π)

• R stem:
nbinom

• Probability mass function:

f (x;r,π) =
(
x+ r − 1

x

)
πr(1−π)x

• Cumulative distribution function:

F(x;r,π) =
x∑
i=0

f (i;r,π)

Figure A.7: A graph of the Negative Binomial probability mass function for various val-
ues of π, with r = 6.
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A.5.1 Parameters

r Number of successes until stopping
π Success probability

Historical note: The Pascal distribution and the Pólya distribution are spe-
cial cases of the Negative Binomial distribution. The former requires r ∈ Z;
the latter, r <Z. The name of the Negative Binomial distribution comes from
extending the binomial theorem to negative exponents.

A.5.2 Statistics

Mean: r 1−π
π

Median: —

Mode: b (1−π)(r−1)
π c

Variance: r 1−π
π2

Inter-Quartile Range: —

Sample Space:
{
0,1, . . .

}
Skew: 2−π√

r(1−π)

Excess Kurtosis: 6
r + π2

r(1−π)

As with the Geometric distribution, π = µ
σ2 .
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A.5.3 Related Distribution Let us be given the following:

• If X ∼ NegBin(1,π), then X ∼ Geom(π).

• Let Xi be independent and identically distributed random variables

with a Geometric distribution; that is, let Xi
iid∼ Geom(π). This im-

plies
∑
iXi ∼ NegBin(r,π), where r is the number of random variables

summed.

Note: This is just one way of parameterizing this distribution. Some
sources have the random variable be the number of trials until the rth

success.

Example A.6: Officer McGrowl still patrols the mean streets of Stillwater,
OK, looking for people who are driving under the influence of alcohol. Ac-
cording to official estimates, a full 10% of the drivers at 11:00pm are driving
drunk.

If McGrowl begins to randomly pull over drivers, how many sober
drivers can he expect to pull over before he catches his fourth drunk driver?
What is the probability that he pulls over 15 sober drivers before he pulls
over his fourth drunk driver? What is the probability that it takes 100 traffic
stops until he catches his fourth drunk driver? If it takes 100 stops or more
before he catches his fourth drunk driver, what can we conclude about the
official estimates?

Solution: According to the problem, π = 0.10 and r = 4. Thus, we have

X ∼ NegBin(4,0.10).

With that, we have

E [X] = r
1−π
π

= 4
0.90
0.10

= 36,

P [X = 15] =
(
x+ r − 1

x

)
πr(1−π)x =

(
15 + 4− 1

15

)
0.104(0.90)15 = 0.0168, and

P [X = 96] =
(
x+ r − 1

x

)
πr(1−π)x =

(
96 + 4− 1

96

)
0.104(0.90)96 = 0.0006
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These last two probabilities can be calculated using R with

dnbinom(15, size=4, prob=0.10), and

dnbinom(96, size=4, prob=0.10)

As to the question about the believability of the official estimates, we calcu-
late P [X ≥ 100], find that it equals 0.00572. As this value is less than our
usual cut-off value of α = 0.05, we conclude that the official estimates are in
error. The proportion of drunk drivers at this time is closer to 2.5%. �
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A.6: Hypergeometric

The Hypergeometric distribution is a generalization to the Binomial distribu-
tion. In the Binomial distribution, the probability of success did not change.
This can be brought about by sampling with replacement or sampling from
an infinite population. The Hypergeometric distribution describes the prob-
abilities when sampling is done without replacement from a finite population
(because π changes from Bernoulli trial to Bernoulli trial). As with the Bino-
mial distribution, the random variable is the number of successes in n trials.
Thus, the Hypergeometric distribution only fails requirement 3 for the Bino-
mial distribution (page 526).

• Symbol:
X ∼ H(m,n,k)

• R stem:
hyper

Figure A.8: A graph of the Hypergeometric probability mass function for various values
of the parameters.
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• Probability mass function:

f (x;m,n,k) =

(
m
x

) (
n

k − x

)
(
m+n
k

)
• Cumulative distribution function:

F(x;m,n,k) =
x∑
i=0

f (i;m,n,k)

A.6.1 Parameters

m Number of successes in the population
n Number of failures in the population
k Sample size drawn from the population

Historical note: In the 17th century, John Wallis extensively studied factori-
als and sequences of factorials. He named one such class of sequences hyper-
geometric because it grew at a rate faster than geometric. It is this use of the
term hypergeometric that gave its name to the Hypergeometric distribution—
ratios of successive terms increase.
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A.6.2 Statistics

Mean: k m
m+n

Median: —

Mode: b (k+1)(m+1)
m+n+2 c

Variance: k m
m+n ·

n
m+n ·

m+n−k
m+n−1

Inter-Quartile Range: —

Support Set:
[
max

{
0, k −n

}
, min

{
k,m

}]
Skew: —

Excess Kurtosis: —

A.6.3 Related Distribution Let us be given the following:

• If X ∼ H(m,n,1), then X ∼ Bern
(
π = m

m+n

)
Note: As with most probability distributions, its myriad origins begat
myriad parameterizations. As usual, while the letters may change, the
relationships between the statistics do not.

Example A.7: According to the 2010 census, the population of Oklahoma
is 3,814,820 with 168,625 Roman Catholics. A researcher calls 1000 peo-
ple (without repeats) and reaches only 40 Roman Catholics. If the census is
correct, what is the probability of this event?

Solution: Define the random variable X as the number of Roman Catholics
telephoned, out of the 1000 Oklahomans.

First, let us solve this as a Binomial experiment. Doing so is not ap-
propriate according to the information given. However, it will allow us
to discover something interesting. To calculate the Binomial probability,
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we need to determine n and π from the information provided. Accord-
ing to the problem, n = 1000 (the number of Oklahomans I contact) and
π = m

m+n = 168,625
3,814,820 ≈ 0.0442. Thus, the (approximate) distribution of X is

X ∼ Bin(1000;0.0442)

Using R,

dbinom(40, size=1000, prob=168625/3814820)

gives P [X = 40] = 0.0517819.

Second, let us now solve this as a Hypergeometric experiment. That
is, we use

X ∼ H(m = 168,625;n = 3,646,195;k = 1000)

Substituting these values into the probability mass function for the Hyper-
geometric distribution, we get P [X = 40] = 0.05178524. In R, this is

dhyper(40, m=168625, n=3646195, k=1000)

�

Note: These two probabilities agree to four digits. This is because a
large population size (m+n) makes the change in success probability very
slight. In other words, when the population is large, there is little reason
to use the Hypergeometric over the Binomial.

Note: In this problem, we simply calculated the probability of the spe-
cific result. We did not calculate the p-value. Recall that the p-value is p-value
the probability of observing data this extreme or more so, given that the
null hypothesis is true. The “or more so” part indicates that we need
to calculate a cumulative probability, not a point probability, which we
calculated.
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A.7: Poisson

The Poisson distribution is frequently used as the basis distribution for count
variables — modeling the count of an event over a period of time or a region.
In this way, it is different from the Binomial in which we are counting the
number of successful experiments out of the total number of experiments.

• Symbol:
X ∼ P (λ)

• R stem:
pois

• Probability mass function:

f (x;λ) =
e−λλx

x!

• Cumulative distribution function:

F(x;λ) =
x∑
i=0

f (i;λ)

Figure A.9: A graph of the Poisson probability mass function for various values of the
rate parameter, λ.
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A.7.1 Parameter

λ rate of successes

Historical note: The distribution was first introduced by Siméon Denis Pois-
son (1781–1840) and published in Recherches sur la probabilité des jugements
en matière criminelle et en matière civile (Poisson 1837). The work theorized
about the number of wrongful convictions in a given country by focusing on
certain random variables that count the number of discrete occurrences that
take place during a time-interval of given length.

While Poisson introduced this distribution in 1837, its most famous
application came in 1898 when Ladislaus Bortkiewicz modeled the number
of soldiers in the Prussian army killed by accidental horse kick. In his book,
Das Gesetz der kleinen Zahlen, Bortkiewicz examined the distribution of ran-
dom variables whose success probability was small. He proved that the Pois-
son distribution was the limit of Binomial distributions where n → ∞ and
nπ = λ is held constant (Bortkiewicz 1898).

A.7.2 Statistics

Mean: λ

Median: bλ+ 1
3 −

0.02
λ c, approximately

Modes: dλe − 1, and bλc

Variance: λ

Inter-Quartile Range: —

Sample Space:
{
0,1,2, . . .

}
Skew: 1√

λ

Excess Kurtosis: 1
λ
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A.7.3 Related Distributions Let us be given the following:

• Let X ∼ Bin(n,π). Letting n→∞with nπ remaining constant results in

X
d→ P (λ = nπ). This is Bortkiewicz’s (1898) famous result (see Section

A.7.5).

• Let Xi
ind∼ P (λi). Then

∑
Xi ∼ P (

∑
λi).

• If X ∼ P (λ) represents the number of items arriving, then the timeinter-arrival
between arrivals, T , has an Exponential distribution, T ∼ Exp(λ).

• The Negative Binomial is also used to model counts over space or time.
It turns out that the Negative Binomial distribution is equivalent to the
Poisson distribution where λ has a Gamma distribution (see Section
B.6).

A.7.4 Discussion Perhaps the most important thing about the Poisson
distribution is that sums of independent Poisson-distributed random vari-

ables also have a Poisson distribution. That is, if Xi
ind∼ P (λi), then

∑
Xi ∼

P (
∑
λi). This arises from the fact that the Poisson distribution is an infinitely

divisible distribution.

The probability mass function for the Poisson distribution arises from
an approximation of the Binomial distribution when the success probability
π is close to 0 or 1 and n is large. One can prove this using moment generating
functions or calculus (see Section A.7.5 for a proof using the latter).

Example A.8: Let us continue the previous hurricane example (Example
A.4). Recall that in the past 20 years, four hurricanes made landfall in Al-
abama. What is the probability that Alabama will experience at least one
hurricane this year? What is the probability that it will experience more
than one?

Solution: Note the difference between this example and Example A.4. In
Example A.4, we needed to calculate the probability of getting hit by at least
one hurricane per year in three of the next four years; that is, a success is
defined as Alabama is hit by a hurricane in a calendar year, and the five re-
quirements of a Binomial experiment are satisfied. In this example, we want

546



the probability of multiple hits in a given year, which is not a 0/1 variable,
thus requirements 2 and 5 are violated (page 526).

As our random variable is a count of successes over a period of time, an
appropriate distribution is the Poisson. To use the Poisson distribution, we
need to determine the value of the parameter λ. As λ is the rate of success
over the period of time, we have λ = 4÷ 20 = 0.25 per year.

The first question asks for the probability of being hit by at least one
hurricane this year. This is just

P [X ≥ 1] = 1−P [X < 1]

= 1−P [X = 0]

= 1− e
−λλx

x!

= 1− e
−0.250.250

0!
= 1− 0.7788

Thus, there is a 22% chance of Alabama being hit by at least one hurricane
this year. The probability that it will be hit by multiple hurricanes is

P [X ≥ 2] = P [X > 1]

= P [X ≥ 1]−P [X = 1]

= 0.2212− e
−λλx

x!

= 0.2212− e
−0.250.251

1!
= 0.2212− 0.1947

There is approximately a 2.5% chance that Alabama will be hit by multiple
hurricanes this (or any) year. �
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A.7.5 Proof of the Poisson Limit It can be shown that the Poisson dis-
tribution is actually a Binomial distribution under two requirements: The
number of Bernoulli trials is infinite and the expected value is constant. To
see this, here is a proof.

Theorem A.2 (Poisson as a Limit). Let X ∼ Bin(n,π). Then, if n → ∞ while
λ := nπ is constant, then X ∼ P (λ).

Proof.

lim
n→∞

(
n
x

)
πx(1−π)n−x = lim

n→∞
n!

(n− x)! x!

(λ
n

)x (
1− λ

n

)n−x
= lim
n→∞

n(n− 1)(n− 2) · · · (n− x+ 1)
nx

(
λx

x!

) (
1− λ

n

)n−x

Now, note these three limits:

lim
n→∞

n(n− 1)(n− 2) · · · (n− x+ 1)
nx

= 1

lim
n→∞

(
1− λ

n

)−x
= 1−x = 1

lim
n→∞

(
1− λ

n

)n
:= eλ

Using these results and substituting them into the original limit above gives
our result:

lim
n→∞

(
n
x

)
πx(1−π)n−x =

1
x!
λxe−λ

And, the result is shown.
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A.8: End of Appendix Materials

A.8.1 R Functions In this appendix chapter, we were introduced to sev-
eral R functions dealing with discrete probability distributions that may be
very useful in the future.

Discrete General Distribution:

sample(n, size, replace=TRUE) Returns size random integers between 1
and n, inclusive (with replacement).

sample(c(v1,v2,...,vx), size, prob=c(p1,p2,...,px), replace=TRUE) Returns n
random values from the set

{
v1,v2, ,vx

}
, where the probability of each

outcome is
{
p1,p2, ...,px

}
, respectively.

Binomial Distribution: R uses the parameterization where size is the num-
ber of trials and prob is the success probability. The variable represents the
number of successes in the sample.

dbinom(x, size,prob) Returns the probability for an x-value according to
the specified Binomial distribution; it calculates P [X = x].

pbinom(x, size,prob) Returns the cumulative probability for an x-value ac-
cording to the specified Binomial distribution; it calculates P [X ≤ x].

qbinom(p, size,prob) Returns the quantile (percentile) according to the Bi-
nomial distribution specified; it calculates xp such that P

[
X ≤ xp

]
= p.

rbinom(n, size,prob) Returns n random numbers from the specified Bino-
mial distribution.
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Geometric Distribution: R uses the parameterization where prob is the
success probability and the variable represents the number of failures un-
til the first success.

dgeom(x, prob) Returns the probability for an x-value according to the spec-
ified Geometric distribution; it calculates P [X = x].

pgeom(x, prob) Returns the cumulative probability for an x-value accord-
ing to the specified Geometric distribution; it calculates P [X ≤ x].

qgeom(p, prob) Returns the quantile (percentile) according to the specified
Geometric distribution; it calculates xp such that P

[
X ≤ xp

]
= p.

rgeom(n, prob) Returns n random numbers from the specified Geometric
distribution.

Negative Binomial Distribution: R uses the parameterization where size
is the number of successes sought and prob is the success probability. The
variable represents the number of failures until the sizeth success.

dnbinom(x,size,prob) Returns the probability for an x-value according to
the specified Negative Binomial distribution; it calculates P [X = x].

pnbinom(x,size,prob) Returns the cumulative probability for an x-value ac-
cording to the specified Negative Binomial distribution; it calculates
P [X ≤ x].

qnbinom(p,size,prob) Returns the quantile (percentile) according to the Neg-
ative Binomial distribution specified; that is, it calculates xp such that

P

[
X ≤ xp

]
= p.

rnbinom(n,size,prob) Returns n random numbers from the specified Neg-
ative Binomial distribution.
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Hypergeometric Distribution: R uses the parameterization where m is the
number of successes in the population, n is the number of failures in the
population, and k is the sample size drawn from the population. The variable
represents the number of successes in the sample.

dhyper(x, m,n,k) Returns the probability for an x-value according to the
specified Hypergeometric distribution; it calculates P [X = x].

phyper(x, m,n,k) Returns the cumulative probability for an x-value accord-
ing to the specified Hypergeometric distribution; it calculates P [X ≤ x].

qhyper(p, m,n,k) Returns the quantile (percentile) according to the speci-
fied Hypergeometric distribution; it calculates xp such that P

[
X ≤ xp

]
=

p.

rhyper(n, m,n,k) Returns n random numbers from the specified Hypergeo-
metric distribution.

Poisson Distribution: R uses the parameterization where lambda is the rate
(or expected value). The variable represents the number of successes.

dpois(x, lambda) Returns the probability for an x-value according to the
specified Poisson distribution; it calculates P [X = x].

ppois(x, lambda) Returns the cumulative probability for an x-value accord-
ing to the specified Poisson distribution; it calculates P [X ≤ x].

qpois(p, lambda) Returns the quantile (percentile) according to the speci-
fied Poisson distribution; it calculates xp such that P

[
X ≤ xp

]
= p.

rpois(n, lambda) Returns n random numbers from the specified Poisson
distribution.
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A.8.2 Exercises and Extensions This section offers suggestions on things
you can practice from this appendix of discrete distributions.

Summary:

1. Let the random variable X have sample space
{
1,3,6

}
with respective

probabilities
{
0.50,0.25,0.25

}
. Calculate the following:

a) E [X]

b) V [X]

c) P [X = 3]

d) P [X > 3]

e) P [X ≤ 5]

2. Let X ∼ Bin(n = 1,π = 0.25) and Y ∼ Bin(n = 1,π = 0.25).

a) What is the distribution of X +Y ?

b) What is the distribution of XY ?

c) What is the distribution of X2?

d) What is the distribution of X2Y 0.5?

e) Calculate P [XY ≥ 0.5].

f) Calculate P [X +Y ≥ 0.5].

3. Let us assume X ∼ Bin(n = 3,π = 0.25). Calculate the following:

a) E [X]

b) V [X]

c) P [X = 0]

d) P [X > 0]

e) P [X ≤ 5]
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4. Let us assume X ∼ Bin(10,0.50). Calculate the following:

a) E [X]

b) V [X]

c) P [X = 0]

d) P [X > 0]

e) P [X ≤ 5]

5. Let us assume X ∼ H(m = 50,n = 50, k = 20). Calculate the following:

a) E [X]

b) V [X]

c) P [X = 10]

d) P [X > 10]

e) P [X ≤ 12]

6. Let us assume X ∼ H(m = 10,n = 5, k = 2). Calculate the following:

a) E [X]

b) V [X]

c) P [X = 1]

d) P [X > 1]

e) P [X ≤ 2]

7. Let us assume X ∼ Geom(π = 0.10). Calculate the following:

a) E [X]

b) V [X]

c) P [X ≤ 10]

d) P [X ≤ 20]

e) P [5 < X ≤ 10]
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8. Let us assume Xi
iid∼ Geom(π = 0.10). Let us define T as the sum of five

such X values; i.e. T :=
∑5
i=1Xi . What is the exact distribution of T ?

Calculate the following:

a) E [T ]

b) V [T ]

c) P [X ≤ 10]

d) P [T ≤ 40]

e) P [20 < T ≤ 40]

9. Let us assume X ∼ P (λ = 1). Calculate the following:

a) E [X]

b) V [X]

c) P [X ≤ 1]

d) P [X ≤ 2]

e) P [2 < X ≤ 4]

Data:

10. In Oklahoma, standard license plates consist of six alphanumeric char-
acters. The first three are digits (0–9); the second three are letters (A–Z).
All digit and letter combinations are possible (equally likely).

a) How many such license plates can Oklahoma issue?

b) With that information, what is the probability that a randomly
selected license plate has exactly one ‘A’ on it?

c) What is the probability that a randomly selected plate contains no
‘3’ on it?
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11. A research scientist desires to test for the presence of a lethal amount of
dissolved hydrogen cyanide (HCN) in a sample of water from a water
bottler. Unfortunately, this experiment is dangerous, and the scientist
is clumsy. Each time he performs this experiment, he has a 5 percent
chance of causing some damage to himself and the laboratory. Regard-
less, he performs the experiment 10 times to get a better estimate of
the HCN level in the water sample. Assuming the test results are inde-
pendent, we know the distribution of the number of experiments that
cause damage.

a) What is the probability that the first experiment causes damage?

b) What is the probability that the second experiment causes dam-
age, given that the first did not?

c) What is the probability that none of the 10 experiments cause
damage?

d) What is the probability that at least one of those 10 experiments
causes damage?

e) What is the probability that all 10 of the experiments cause dam-
age?

12. At the beginning of the NCAA Football season, an infamous commenta-
tor stated that Oklahoma State University (OSU) only has a 90% chance
of winning each of its 12 games this season. Let us assume the com-
mentator is correct, which means the number of games OSU wins this
season is a Binomial random variable with n = 12 and π = 0.90.

a) What is the expected number of games OSU will win this season?

b) The last game of the regular season is the Bedlam Game against
the University of Oklahoma (OU). What is the probability that
OSU beats OU?

c) Another enjoyable game will against the Longhorns of the Univer-
sity of Texas. What was the probability that OSU will beat Texas?

d) Given that OSU beats Texas, what is the probability that it beats
OU?

e) What is the probability that OSU beats both Texas and OU?

f) What is the probability that OSU beats neither Texas nor OU?
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13. You professor loves M&M’s. According to its website, the distribution
of the colors of milk chocolate M&M’s is

Color: Brown Yellow Red Blue Orange Green

Proportion: 0.13 0.14 0.13 0.24 0.20 0.16

a) To determine if this is the correct distribution of the colors, your
professor decided to perform an experiment, buying a small bag of
20 M&M’s. What is the expected number of orange M&M’s in the
bag? What is the probability of finding exactly 2 orange M&M’s?
What is the probability of finding no orange M&M’s?

b) Now, let us pretend that the provided color distribution is correct.
Your professor reaches in the bag and draws out a single M&M.
What is the probability that it is green? Placing the M&M back in
the bag (whatever its color), shaking it up, and drawing an M&M,
what is the probability that this second M&M is green?

c) To continue the experiment, your professor buys another large bag
of M&M’s with exactly 13 brown, 14 yellow, 13 red, 24 blue, 20 or-
ange, and 16 green M&M’s. Reaching in the bag, he draws out a
single M&M. What is the probability that it is blue? He eats that
M&M (whatever the color) and pull out another random M&M.
What is the probability that this M&M is blue?

d) Let us still pretend that the provided color distribution is correct
and that a new bag of M&M’s has exactly 13 brown, 14 yellow, 13
red, 24 blue, 20 orange, and 16 green M&M’s. He draws an M&M,
records its color, eats it, draws an M&M, records its color, and eats
it. What is the probability that he drew a red followed by a green
M&M? What is the probability that he drew 2 blue M&M’s? Given
that the first M&M was yellow, what is the probability that the
second is also yellow? What is the probability that both M&M’s
are yellow?
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14. During the 2010 census, the population of Stillwater, OK, was 46,048.
Only 432 of this group knows the official state beverage. If one ran-
domly calls 1000 people in Stillwater, what is the probability that none
of them knows the official state beverage?

• What data-collection scheme would produce the Binomial result?

• What data-collection scheme would produce the Hypergeometric
result?

• Solve this problem both as a Binomial problem and as a Hyperge-
ometric problem. Comment on the difference in probability esti-
mates between the two data-collection schemes.

15. The toll booth on the Stillwater spur of the Cimarron Turnpike is the
main entrance to Stillwater from Tulsa. The traffic through the toll
booth tends to be rather steady throughout the year — except for the
Saturdays that OSU has a home game. On those mornings, the average
rate of cars passing through the tollbooth is six cars every 10 minutes.
Answer the following for a gameday morning.

a) What is the probability that no cars will pass through in a 10-
minute period?

b) What is the probability that more than 5 cars will pass through in
a 10-minute period?

c) What is the probability that at least 36 cars will pass through in a
given hour?

16. In the Pick 3 lottery game in Oklahoma, the player selects a three-digit
number (000 through 999). The lottery authority uses a random num-
ber generator to select the winning three digits. If the player’s three
digits match the winning digits, in order, the player wins $500.

a) What is the probability of a player winning on a single ticket?

b) What is the probability of a player winning at least once with three
randomly selected tickets (with replacement)?

c) What is the probability of a player winning at least once with 100
randomly selected tickets (with replacement)?
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17. Answer the previous problem’s questions where the player ensures that
the tickets do not repeat (i.e. without replacement) and comment on the
difference in probabilities between this problem and the previous one.

18. When opinion polls call residential landlines, only 15% of the calls are
answered by a human. You are hired to contact 1048 people to de-
termine their position on a current news topic. What is the expected
number of calls you can expect to make in order to reach 1048 people?
What is the standard deviation?

People who make these types of telephone calls for a living charge by
the call and by the person contacted. A typical rate is $1 per call plus
$5 per person interviewed. What is the expected cost of the above poll?
What is the standard deviation of that cost?

19. A person claims to have extrasensory perception (ESP). To test this,
a researcher places six cards face down on the table in front of the
claimant. Each of these cards can be one of the following four shapes:
waves, plus, circle, and square. The cards are independent of each
other; that is, knowing that the first is a wave does not change the prob-
ability that any of the others are waves.

Assuming that the person does not have ESP and merely guesses ran-
domly, write the probability mass function for the number of cards he
guesses correctly. Under this same assumption, what is the expected
number of cards he will guess correctly? If he guesses three cards cor-
rectly, do we have sufficient proof that he has ESP? What if he guesses
all six cards correctly?

20. Officer McGrowl patrols the mean streets of Stillwater, OK, every night
looking for people who are driving under the influence of alcohol. Mc-
Growl estimates that 60% of the drivers at 2:00am are driving drunk. If
McGrowl begins to randomly pull over drivers, how many sober drivers
can he expect to pull over before he catches his first drunk driver? How
many sober drivers can he expect to pull over before he gets his fourth
drunk driver?

21. Referring to the previous problem, what is the probability that Officer
McGrowl pulls over 5 sober drivers before he pulls over his first drunk
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driver? What is the probability that he pulls over 15 sober drivers be-
fore he pulls over his first drunk driver? What is the probability that
he pulls over 10 sober drivers out of the 10 drivers he pulls over in that
night?

22. According to the US Census Bureau (2010), 15.3% of all Americans
aged 25 and older had neither a high school diploma nor a GED. As a
part of your research, you need to contact 500 people from this popu-
lation. Unfortunately, a complete sampling frame does not exist. Thus,
you decide to purchase a mailing list of the general population for
$9000. To keep costs down, you only want to send to subsample of
this list.

How many people on the list will you need to contact in order to have a
50% probability of contacting 500 people lacking a diploma and GED?
If you decide you need a 95% probability of achieving your goal of 500,
how many will you need to mail?

Monte Carlo:

23. Let X ∼ Bin(n = 3,π = 0.50). Define Y = X2.

a) Calculate the expected value of X.

b) Estimate the expected value of Y.

c) Estimate the standard deviation of Y.

d) Estimate the first quartile of X and of Y.

24. Let X ∼ P (λ = 2) and Y ∼ P (λ = 5). Define W = X + Y . Determine the
exact distribution ofW . Simulate from X+Y to check that your answer
is reasonable.

25. Is Louisiana’s xLA = 11 years of hurricane landfalls statistically different
from Alabama’s xAL = 4 for those 20 year
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A.8.3 References and Additional Readings This section provides a list
of statistical works. Those works cited in the chapter are here. Also here are
works that complement the chapter’s topics.

• Ladislaus von Bortkiewicz. (1898) Das Gesetz der kleinen Zahlen. Leipzig,
Germany: B.G. Teubner.

• Siméon Denis Poisson. (1837) Probabilité des jugements en matière crim-
inelle et en matière civile, précédées des règles générales du calcul des prob-
abilitiés. Paris, France: Bachelier.
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